| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/suppression_gain.h" |
| |
| #include "typedefs.h" // NOLINT(build/include) |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| #include <math.h> |
| #include <algorithm> |
| #include <functional> |
| #include <numeric> |
| |
| #include "modules/audio_processing/aec3/vector_math.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Reduce gain to avoid narrow band echo leakage. |
| void NarrowBandAttenuation(int narrow_bin, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| const int upper_bin = |
| std::min(narrow_bin + 6, static_cast<int>(kFftLengthBy2Plus1 - 1)); |
| for (int k = std::max(0, narrow_bin - 6); k <= upper_bin; ++k) { |
| (*gain)[k] = std::min((*gain)[k], 0.001f); |
| } |
| } |
| |
| // Adjust the gains according to the presence of known external filters. |
| void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) { |
| // Limit the low frequency gains to avoid the impact of the high-pass filter |
| // on the lower-frequency gain influencing the overall achieved gain. |
| (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]); |
| |
| // Limit the high frequency gains to avoid the impact of the anti-aliasing |
| // filter on the upper-frequency gains influencing the overall achieved |
| // gain. TODO(peah): Update this when new anti-aliasing filters are |
| // implemented. |
| constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000; |
| const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit]; |
| std::for_each( |
| gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1, |
| [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); }); |
| (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1]; |
| } |
| |
| // Computes the gain to apply for the bands beyond the first band. |
| float UpperBandsGain( |
| const rtc::Optional<int>& narrow_peak_band, |
| bool saturated_echo, |
| const std::vector<std::vector<float>>& render, |
| const std::array<float, kFftLengthBy2Plus1>& low_band_gain) { |
| RTC_DCHECK_LT(0, render.size()); |
| if (render.size() == 1) { |
| return 1.f; |
| } |
| |
| if (narrow_peak_band && |
| (*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) { |
| return 0.001f; |
| } |
| |
| constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2; |
| const float gain_below_8_khz = *std::min_element( |
| low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end()); |
| |
| // Always attenuate the upper bands when there is saturated echo. |
| if (saturated_echo) { |
| return std::min(0.001f, gain_below_8_khz); |
| } |
| |
| // Compute the upper and lower band energies. |
| const auto sum_of_squares = [](float a, float b) { return a + b * b; }; |
| const float low_band_energy = |
| std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares); |
| float high_band_energy = 0.f; |
| for (size_t k = 1; k < render.size(); ++k) { |
| const float energy = std::accumulate(render[k].begin(), render[k].end(), |
| 0.f, sum_of_squares); |
| high_band_energy = std::max(high_band_energy, energy); |
| } |
| |
| // If there is more power in the lower frequencies than the upper frequencies, |
| // or if the power in upper frequencies is low, do not bound the gain in the |
| // upper bands. |
| float anti_howling_gain; |
| constexpr float kThreshold = kBlockSize * 10.f * 10.f / 4.f; |
| if (high_band_energy < std::max(low_band_energy, kThreshold)) { |
| anti_howling_gain = 1.f; |
| } else { |
| // In all other cases, bound the gain for upper frequencies. |
| RTC_DCHECK_LE(low_band_energy, high_band_energy); |
| RTC_DCHECK_NE(0.f, high_band_energy); |
| anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy); |
| } |
| |
| // Choose the gain as the minimum of the lower and upper gains. |
| return std::min(gain_below_8_khz, anti_howling_gain); |
| } |
| |
| // Limits the gain increase. |
| void UpdateMaxGainIncrease( |
| const EchoCanceller3Config& config, |
| size_t no_saturation_counter, |
| bool low_noise_render, |
| bool linear_echo_estimate, |
| const std::array<float, kFftLengthBy2Plus1>& last_echo, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& last_gain, |
| const std::array<float, kFftLengthBy2Plus1>& new_gain, |
| std::array<float, kFftLengthBy2Plus1>* gain_increase) { |
| float max_increasing; |
| float max_decreasing; |
| float rate_increasing; |
| float rate_decreasing; |
| float min_increasing; |
| float min_decreasing; |
| |
| auto& param = config.gain_updates; |
| if (linear_echo_estimate) { |
| max_increasing = param.nonlinear.max_inc; |
| max_decreasing = param.nonlinear.max_dec; |
| rate_increasing = param.nonlinear.rate_inc; |
| rate_decreasing = param.nonlinear.rate_dec; |
| min_increasing = param.nonlinear.min_inc; |
| min_decreasing = param.nonlinear.min_dec; |
| } else if (low_noise_render) { |
| max_increasing = param.low_noise.max_inc; |
| max_decreasing = param.low_noise.max_dec; |
| rate_increasing = param.low_noise.rate_inc; |
| rate_decreasing = param.low_noise.rate_dec; |
| min_increasing = param.low_noise.min_inc; |
| min_decreasing = param.low_noise.min_dec; |
| } else if (no_saturation_counter > 10) { |
| max_increasing = param.normal.max_inc; |
| max_decreasing = param.normal.max_dec; |
| rate_increasing = param.normal.rate_inc; |
| rate_decreasing = param.normal.rate_dec; |
| min_increasing = param.normal.min_inc; |
| min_decreasing = param.normal.min_dec; |
| } else { |
| max_increasing = param.saturation.max_inc; |
| max_decreasing = param.saturation.max_dec; |
| rate_increasing = param.saturation.rate_inc; |
| rate_decreasing = param.saturation.rate_dec; |
| min_increasing = param.saturation.min_inc; |
| min_decreasing = param.saturation.min_dec; |
| } |
| |
| for (size_t k = 0; k < new_gain.size(); ++k) { |
| if (echo[k] > last_echo[k]) { |
| (*gain_increase)[k] = |
| new_gain[k] > last_gain[k] |
| ? std::min(max_increasing, (*gain_increase)[k] * rate_increasing) |
| : min_increasing; |
| } else { |
| (*gain_increase)[k] = |
| new_gain[k] > last_gain[k] |
| ? std::min(max_decreasing, (*gain_increase)[k] * rate_decreasing) |
| : min_decreasing; |
| } |
| } |
| } |
| |
| // Computes the gain to reduce the echo to a non audible level. |
| void GainToNoAudibleEcho( |
| const EchoCanceller3Config& config, |
| bool low_noise_render, |
| bool saturated_echo, |
| bool saturating_echo_path, |
| bool linear_echo_estimate, |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& masker, |
| const std::array<float, kFftLengthBy2Plus1>& min_gain, |
| const std::array<float, kFftLengthBy2Plus1>& max_gain, |
| const std::array<float, kFftLengthBy2Plus1>& one_by_echo, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| float nearend_masking_margin = 0.f; |
| if (linear_echo_estimate) { |
| nearend_masking_margin = |
| low_noise_render |
| ? config.gain_mask.m9 |
| : (saturated_echo ? config.gain_mask.m2 : config.gain_mask.m3); |
| } else { |
| nearend_masking_margin = config.gain_mask.m7; |
| } |
| |
| RTC_DCHECK_LE(0.f, nearend_masking_margin); |
| RTC_DCHECK_GT(1.f, nearend_masking_margin); |
| const float one_by_one_minus_nearend_masking_margin = |
| 1.f / (1.0f - nearend_masking_margin); |
| |
| const float masker_margin = |
| linear_echo_estimate ? config.gain_mask.m1 : config.gain_mask.m8; |
| |
| for (size_t k = 0; k < gain->size(); ++k) { |
| const float unity_gain_masker = std::max(nearend[k], masker[k]); |
| RTC_DCHECK_LE(0.f, nearend_masking_margin * unity_gain_masker); |
| if (echo[k] <= nearend_masking_margin * unity_gain_masker || |
| unity_gain_masker <= 0.f) { |
| (*gain)[k] = 1.f; |
| } else { |
| RTC_DCHECK_LT(0.f, unity_gain_masker); |
| (*gain)[k] = std::max(0.f, (1.f - 5.f * echo[k] / unity_gain_masker) * |
| one_by_one_minus_nearend_masking_margin); |
| (*gain)[k] = |
| std::max(masker_margin * masker[k] * one_by_echo[k], (*gain)[k]); |
| } |
| |
| (*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]); |
| } |
| } |
| |
| // TODO(peah): Make adaptive to take the actual filter error into account. |
| constexpr size_t kUpperAccurateBandPlus1 = 29; |
| |
| // Computes the signal output power that masks the echo signal. |
| void MaskingPower(const EchoCanceller3Config& config, |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise, |
| const std::array<float, kFftLengthBy2Plus1>& last_masker, |
| const std::array<float, kFftLengthBy2Plus1>& gain, |
| std::array<float, kFftLengthBy2Plus1>* masker) { |
| std::array<float, kFftLengthBy2Plus1> side_band_masker; |
| float max_nearend_after_gain = 0.f; |
| for (size_t k = 0; k < gain.size(); ++k) { |
| const float nearend_after_gain = nearend[k] * gain[k]; |
| max_nearend_after_gain = |
| std::max(max_nearend_after_gain, nearend_after_gain); |
| side_band_masker[k] = nearend_after_gain + comfort_noise[k]; |
| (*masker)[k] = comfort_noise[k] + config.gain_mask.m4 * last_masker[k]; |
| } |
| |
| // Apply masking only between lower frequency bands. |
| RTC_DCHECK_LT(kUpperAccurateBandPlus1, gain.size()); |
| for (size_t k = 1; k < kUpperAccurateBandPlus1; ++k) { |
| (*masker)[k] += config.gain_mask.m5 * |
| (side_band_masker[k - 1] + side_band_masker[k + 1]); |
| } |
| |
| // Add full-band masking as a minimum value for the masker. |
| const float min_masker = max_nearend_after_gain * config.gain_mask.m6; |
| std::for_each(masker->begin(), masker->end(), |
| [min_masker](float& a) { a = std::max(a, min_masker); }); |
| } |
| |
| // Limits the gain in the frequencies for which the adaptive filter has not |
| // converged. Currently, these frequencies are not hardcoded to the frequencies |
| // which are typically not excited by speech. |
| // TODO(peah): Make adaptive to take the actual filter error into account. |
| void AdjustNonConvergedFrequencies( |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| constexpr float oneByBandsInSum = |
| 1 / static_cast<float>(kUpperAccurateBandPlus1 - 20); |
| const float hf_gain_bound = |
| std::accumulate(gain->begin() + 20, |
| gain->begin() + kUpperAccurateBandPlus1, 0.f) * |
| oneByBandsInSum; |
| |
| std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(), |
| [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); }); |
| } |
| |
| } // namespace |
| |
| // TODO(peah): Add further optimizations, in particular for the divisions. |
| void SuppressionGain::LowerBandGain( |
| bool low_noise_render, |
| const rtc::Optional<int>& narrow_peak_band, |
| bool saturated_echo, |
| bool saturating_echo_path, |
| bool linear_echo_estimate, |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| // Count the number of blocks since saturation. |
| no_saturation_counter_ = saturated_echo ? 0 : no_saturation_counter_ + 1; |
| |
| // Precompute 1/echo (note that when the echo is zero, the precomputed value |
| // is never used). |
| std::array<float, kFftLengthBy2Plus1> one_by_echo; |
| std::transform(echo.begin(), echo.end(), one_by_echo.begin(), |
| [](float a) { return a > 0.f ? 1.f / a : 1.f; }); |
| |
| // Compute the minimum gain as the attenuating gain to put the signal just |
| // above the zero sample values. |
| std::array<float, kFftLengthBy2Plus1> min_gain; |
| const float min_echo_power = |
| low_noise_render ? config_.echo_audibility.low_render_limit |
| : config_.echo_audibility.normal_render_limit; |
| if (no_saturation_counter_ > 10) { |
| for (size_t k = 0; k < nearend.size(); ++k) { |
| const float denom = std::min(nearend[k], echo[k]); |
| min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f; |
| min_gain[k] = std::min(min_gain[k], 1.f); |
| } |
| } else { |
| min_gain.fill(0.f); |
| } |
| |
| // Compute the maximum gain by limiting the gain increase from the previous |
| // gain. |
| std::array<float, kFftLengthBy2Plus1> max_gain; |
| for (size_t k = 0; k < gain->size(); ++k) { |
| max_gain[k] = std::min(std::max(last_gain_[k] * gain_increase_[k], |
| config_.gain_updates.floor_first_increase), |
| 1.f); |
| } |
| |
| // Iteratively compute the gain required to attenuate the echo to a non |
| // noticeable level. |
| gain->fill(0.f); |
| for (int k = 0; k < 2; ++k) { |
| std::array<float, kFftLengthBy2Plus1> masker; |
| MaskingPower(config_, nearend, comfort_noise, last_masker_, *gain, &masker); |
| GainToNoAudibleEcho(config_, low_noise_render, saturated_echo, |
| saturating_echo_path, linear_echo_estimate, nearend, |
| echo, masker, min_gain, max_gain, one_by_echo, gain); |
| AdjustForExternalFilters(gain); |
| if (narrow_peak_band) { |
| NarrowBandAttenuation(*narrow_peak_band, gain); |
| } |
| } |
| |
| // Adjust the gain for frequencies which have not yet converged. |
| AdjustNonConvergedFrequencies(gain); |
| |
| // Update the allowed maximum gain increase. |
| UpdateMaxGainIncrease(config_, no_saturation_counter_, low_noise_render, |
| linear_echo_estimate, last_echo_, echo, last_gain_, |
| *gain, &gain_increase_); |
| |
| // Adjust gain dynamics. |
| const float gain_bound = |
| std::max(0.001f, *std::min_element(gain->begin(), gain->end()) * 10000.f); |
| std::for_each(gain->begin(), gain->end(), |
| [gain_bound](float& a) { a = std::min(a, gain_bound); }); |
| |
| // Store data required for the gain computation of the next block. |
| std::copy(echo.begin(), echo.end(), last_echo_.begin()); |
| std::copy(gain->begin(), gain->end(), last_gain_.begin()); |
| MaskingPower(config_, nearend, comfort_noise, last_masker_, *gain, |
| &last_masker_); |
| aec3::VectorMath(optimization_).Sqrt(*gain); |
| } |
| |
| SuppressionGain::SuppressionGain(const EchoCanceller3Config& config, |
| Aec3Optimization optimization) |
| : optimization_(optimization), config_(config) { |
| last_gain_.fill(1.f); |
| last_masker_.fill(0.f); |
| gain_increase_.fill(1.f); |
| last_echo_.fill(0.f); |
| } |
| |
| void SuppressionGain::GetGain( |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise, |
| const RenderSignalAnalyzer& render_signal_analyzer, |
| const AecState& aec_state, |
| const std::vector<std::vector<float>>& render, |
| float* high_bands_gain, |
| std::array<float, kFftLengthBy2Plus1>* low_band_gain) { |
| RTC_DCHECK(high_bands_gain); |
| RTC_DCHECK(low_band_gain); |
| |
| const bool saturated_echo = aec_state.SaturatedEcho(); |
| const bool saturating_echo_path = aec_state.SaturatingEchoPath(); |
| const bool force_zero_gain = aec_state.ForcedZeroGain(); |
| const bool linear_echo_estimate = aec_state.LinearEchoEstimate(); |
| |
| if (force_zero_gain) { |
| last_gain_.fill(0.f); |
| std::copy(comfort_noise.begin(), comfort_noise.end(), last_masker_.begin()); |
| low_band_gain->fill(0.f); |
| gain_increase_.fill(1.f); |
| *high_bands_gain = 0.f; |
| return; |
| } |
| |
| bool low_noise_render = low_render_detector_.Detect(render); |
| |
| // Compute gain for the lower band. |
| const rtc::Optional<int> narrow_peak_band = |
| render_signal_analyzer.NarrowPeakBand(); |
| LowerBandGain(low_noise_render, narrow_peak_band, saturated_echo, |
| saturating_echo_path, linear_echo_estimate, nearend, echo, |
| comfort_noise, low_band_gain); |
| |
| // Compute the gain for the upper bands. |
| *high_bands_gain = |
| UpperBandsGain(narrow_peak_band, saturated_echo, render, *low_band_gain); |
| } |
| |
| // Detects when the render signal can be considered to have low power and |
| // consist of stationary noise. |
| bool SuppressionGain::LowNoiseRenderDetector::Detect( |
| const std::vector<std::vector<float>>& render) { |
| float x2_sum = 0.f; |
| float x2_max = 0.f; |
| for (auto x_k : render[0]) { |
| const float x2 = x_k * x_k; |
| x2_sum += x2; |
| x2_max = std::max(x2_max, x2); |
| } |
| |
| constexpr float kThreshold = 50.f * 50.f * 64.f; |
| const bool low_noise_render = |
| average_power_ < kThreshold && x2_max < 3 * average_power_; |
| average_power_ = average_power_ * 0.9f + x2_sum * 0.1f; |
| return low_noise_render; |
| } |
| |
| } // namespace webrtc |