blob: 90862062144940c410d0ec384bc045640636189d [file] [log] [blame]
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_WIN)
// clang-format off
#include <windows.h> // Must come first.
#include <mmsystem.h>
// clang-format on
#endif
#include <stdint.h>
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "rtc_base/bind.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
using rtc::test::TaskQueueForTest;
namespace rtc {
namespace {
// Noop on all platforms except Windows, where it turns on high precision
// multimedia timers which increases the precision of TimeMillis() while in
// scope.
class EnableHighResTimers {
public:
#if !defined(WEBRTC_WIN)
EnableHighResTimers() {}
#else
EnableHighResTimers() : enabled_(timeBeginPeriod(1) == TIMERR_NOERROR) {}
~EnableHighResTimers() {
if (enabled_)
timeEndPeriod(1);
}
private:
const bool enabled_;
#endif
};
void CheckCurrent(Event* signal, TaskQueue* queue) {
EXPECT_TRUE(queue->IsCurrent());
if (signal)
signal->Set();
}
} // namespace
TEST(TaskQueueTest, Construct) {
static const char kQueueName[] = "Construct";
TaskQueue queue(kQueueName);
EXPECT_FALSE(queue.IsCurrent());
}
TEST(TaskQueueTest, PostAndCheckCurrent) {
static const char kQueueName[] = "PostAndCheckCurrent";
Event event;
TaskQueue queue(kQueueName);
// We're not running a task, so there shouldn't be a current queue.
EXPECT_FALSE(queue.IsCurrent());
EXPECT_FALSE(TaskQueue::Current());
queue.PostTask(Bind(&CheckCurrent, &event, &queue));
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostCustomTask) {
static const char kQueueName[] = "PostCustomImplementation";
TaskQueueForTest queue(kQueueName);
class CustomTask : public QueuedTask {
public:
CustomTask() {}
bool ran() const { return ran_; }
private:
bool Run() override {
ran_ = true;
return false; // Never allow the task to be deleted by the queue.
}
bool ran_ = false;
} my_task;
queue.SendTask(&my_task);
EXPECT_TRUE(my_task.ran());
}
TEST(TaskQueueTest, PostLambda) {
TaskQueueForTest queue("PostLambda");
bool ran = false;
queue.SendTask([&ran]() { ran = true; });
EXPECT_TRUE(ran);
}
TEST(TaskQueueTest, PostDelayedZero) {
static const char kQueueName[] = "PostDelayedZero";
Event event;
TaskQueue queue(kQueueName);
queue.PostDelayedTask([&event]() { event.Set(); }, 0);
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostFromQueue) {
static const char kQueueName[] = "PostFromQueue";
Event event;
TaskQueue queue(kQueueName);
queue.PostTask(
[&event, &queue]() { queue.PostTask([&event]() { event.Set(); }); });
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostDelayed) {
static const char kQueueName[] = "PostDelayed";
Event event;
TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH);
uint32_t start = Time();
queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 100);
EXPECT_TRUE(event.Wait(1000));
uint32_t end = Time();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 90u);
EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290.
}
// This task needs to be run manually due to the slowness of some of our bots.
// TODO(tommi): Can we run this on the perf bots?
TEST(TaskQueueTest, DISABLED_PostDelayedHighRes) {
EnableHighResTimers high_res_scope;
static const char kQueueName[] = "PostDelayedHighRes";
Event event;
TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH);
uint32_t start = Time();
queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 3);
EXPECT_TRUE(event.Wait(1000));
uint32_t end = TimeMillis();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 3u);
EXPECT_NEAR(end - start, 3, 3u);
}
TEST(TaskQueueTest, PostMultipleDelayed) {
static const char kQueueName[] = "PostMultipleDelayed";
TaskQueue queue(kQueueName);
std::vector<std::unique_ptr<Event>> events;
for (int i = 0; i < 100; ++i) {
events.push_back(absl::make_unique<Event>());
queue.PostDelayedTask(Bind(&CheckCurrent, events.back().get(), &queue), i);
}
for (const auto& e : events)
EXPECT_TRUE(e->Wait(1000));
}
TEST(TaskQueueTest, PostDelayedAfterDestruct) {
static const char kQueueName[] = "PostDelayedAfterDestruct";
Event run;
Event deleted;
{
TaskQueue queue(kQueueName);
queue.PostDelayedTask(
rtc::NewClosure([&run] { run.Set(); }, [&deleted] { deleted.Set(); }),
100);
}
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(200));
EXPECT_FALSE(run.Wait(0)); // and should not run.
}
TEST(TaskQueueTest, PostAndReuse) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event;
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
int call_count = 0;
class ReusedTask : public QueuedTask {
public:
ReusedTask(int* counter, TaskQueue* reply_queue, Event* event)
: counter_(counter), reply_queue_(reply_queue), event_(event) {
EXPECT_EQ(0, *counter_);
}
private:
bool Run() override {
if (++(*counter_) == 1) {
std::unique_ptr<QueuedTask> myself(this);
reply_queue_->PostTask(std::move(myself));
// At this point, the object is owned by reply_queue_ and it's
// theoratically possible that the object has been deleted (e.g. if
// posting wasn't possible). So, don't touch any member variables here.
// Indicate to the current queue that ownership has been transferred.
return false;
} else {
EXPECT_EQ(2, *counter_);
EXPECT_TRUE(reply_queue_->IsCurrent());
event_->Set();
return true; // Indicate that the object should be deleted.
}
}
int* const counter_;
TaskQueue* const reply_queue_;
Event* const event_;
};
std::unique_ptr<ReusedTask> task(
new ReusedTask(&call_count, &reply_queue, &event));
post_queue.PostTask(std::move(task));
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostCopyableClosure) {
struct CopyableClosure {
CopyableClosure(int* num_copies, int* num_moves, Event* event)
: num_copies(num_copies), num_moves(num_moves), event(event) {}
CopyableClosure(const CopyableClosure& other)
: num_copies(other.num_copies),
num_moves(other.num_moves),
event(other.event) {
++*num_copies;
}
CopyableClosure(CopyableClosure&& other)
: num_copies(other.num_copies),
num_moves(other.num_moves),
event(other.event) {
++*num_moves;
}
void operator()() { event->Set(); }
int* num_copies;
int* num_moves;
Event* event;
};
int num_copies = 0;
int num_moves = 0;
Event event;
static const char kPostQueue[] = "PostCopyableClosure";
TaskQueue post_queue(kPostQueue);
{
CopyableClosure closure(&num_copies, &num_moves, &event);
post_queue.PostTask(closure);
// Destroy closure to check with msan and tsan posted task has own copy.
}
EXPECT_TRUE(event.Wait(1000));
EXPECT_EQ(num_copies, 1);
EXPECT_EQ(num_moves, 0);
}
TEST(TaskQueueTest, PostMoveOnlyClosure) {
struct SomeState {
explicit SomeState(Event* event) : event(event) {}
~SomeState() { event->Set(); }
Event* event;
};
struct MoveOnlyClosure {
MoveOnlyClosure(int* num_moves, std::unique_ptr<SomeState> state)
: num_moves(num_moves), state(std::move(state)) {}
MoveOnlyClosure(const MoveOnlyClosure&) = delete;
MoveOnlyClosure(MoveOnlyClosure&& other)
: num_moves(other.num_moves), state(std::move(other.state)) {
++*num_moves;
}
void operator()() { state.reset(); }
int* num_moves;
std::unique_ptr<SomeState> state;
};
int num_moves = 0;
Event event;
std::unique_ptr<SomeState> state(new SomeState(&event));
static const char kPostQueue[] = "PostMoveOnlyClosure";
TaskQueue post_queue(kPostQueue);
post_queue.PostTask(MoveOnlyClosure(&num_moves, std::move(state)));
EXPECT_TRUE(event.Wait(1000));
EXPECT_EQ(num_moves, 1);
}
TEST(TaskQueueTest, PostMoveOnlyCleanup) {
struct SomeState {
explicit SomeState(Event* event) : event(event) {}
~SomeState() { event->Set(); }
Event* event;
};
struct MoveOnlyClosure {
void operator()() { state.reset(); }
std::unique_ptr<SomeState> state;
};
Event event_run;
Event event_cleanup;
std::unique_ptr<SomeState> state_run(new SomeState(&event_run));
std::unique_ptr<SomeState> state_cleanup(new SomeState(&event_cleanup));
static const char kPostQueue[] = "PostMoveOnlyCleanup";
TaskQueue post_queue(kPostQueue);
post_queue.PostTask(NewClosure(MoveOnlyClosure{std::move(state_run)},
MoveOnlyClosure{std::move(state_cleanup)}));
EXPECT_TRUE(event_cleanup.Wait(1000));
// Expect run closure to complete before cleanup closure.
EXPECT_TRUE(event_run.Wait(0));
}
// Tests posting more messages than a queue can queue up.
// In situations like that, tasks will get dropped.
TEST(TaskQueueTest, PostALot) {
// To destruct the event after the queue has gone out of scope.
Event event;
int tasks_executed = 0;
int tasks_cleaned_up = 0;
static const int kTaskCount = 0xffff;
{
static const char kQueueName[] = "PostALot";
TaskQueue queue(kQueueName);
// On linux, the limit of pending bytes in the pipe buffer is 0xffff.
// So here we post a total of 0xffff+1 messages, which triggers a failure
// case inside of the libevent queue implementation.
queue.PostTask([&event]() { event.Wait(Event::kForever); });
for (int i = 0; i < kTaskCount; ++i)
queue.PostTask(NewClosure([&tasks_executed]() { ++tasks_executed; },
[&tasks_cleaned_up]() { ++tasks_cleaned_up; }));
event.Set(); // Unblock the first task.
}
EXPECT_GE(tasks_cleaned_up, tasks_executed);
EXPECT_EQ(kTaskCount, tasks_cleaned_up);
}
// Test posting two tasks that have shared state not protected by a
// lock. The TaskQueue should guarantee memory read-write order and
// FIFO task execution order, so the second task should always see the
// changes that were made by the first task.
//
// If the TaskQueue doesn't properly synchronize the execution of
// tasks, there will be a data race, which is undefined behavior. The
// EXPECT calls may randomly catch this, but to make the most of this
// unit test, run it under TSan or some other tool that is able to
// directly detect data races.
TEST(TaskQueueTest, PostTwoWithSharedUnprotectedState) {
static const char kQueueName[] = "PostTwoWithSharedUnprotectedState";
struct SharedState {
// First task will set this value to 1 and second will assert it.
int state = 0;
} state;
TaskQueue queue(kQueueName);
rtc::Event done;
queue.PostTask([&state, &queue, &done] {
// Post tasks from queue to guarantee, that 1st task won't be
// executed before the second one will be posted.
queue.PostTask([&state] { state.state = 1; });
queue.PostTask([&state, &done] {
EXPECT_EQ(state.state, 1);
done.Set();
});
// Check, that state changing tasks didn't start yet.
EXPECT_EQ(state.state, 0);
});
EXPECT_TRUE(done.Wait(1000));
}
} // namespace rtc