| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "system_wrappers/include/rtp_to_ntp_estimator.h" |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| namespace { |
| // Number of RTCP SR reports to use to map between RTP and NTP. |
| const size_t kNumRtcpReportsToUse = 2; |
| |
| // Calculates the RTP timestamp frequency from two pairs of NTP/RTP timestamps. |
| bool CalculateFrequency(int64_t ntp_ms1, |
| uint32_t rtp_timestamp1, |
| int64_t ntp_ms2, |
| uint32_t rtp_timestamp2, |
| double* frequency_khz) { |
| if (ntp_ms1 <= ntp_ms2) |
| return false; |
| |
| *frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) / |
| static_cast<double>(ntp_ms1 - ntp_ms2); |
| return true; |
| } |
| |
| // Detects if there has been a wraparound between |old_timestamp| and |
| // |new_timestamp|, and compensates by adding 2^32 if that is the case. |
| bool CompensateForWrapAround(uint32_t new_timestamp, |
| uint32_t old_timestamp, |
| int64_t* compensated_timestamp) { |
| int64_t wraps = CheckForWrapArounds(new_timestamp, old_timestamp); |
| if (wraps < 0) { |
| // Reordering, don't use this packet. |
| return false; |
| } |
| *compensated_timestamp = new_timestamp + (wraps << 32); |
| return true; |
| } |
| |
| bool Contains(const std::list<RtpToNtpEstimator::RtcpMeasurement>& measurements, |
| const RtpToNtpEstimator::RtcpMeasurement& other) { |
| for (const auto& measurement : measurements) { |
| if (measurement.IsEqual(other)) |
| return true; |
| } |
| return false; |
| } |
| } // namespace |
| |
| RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, |
| uint32_t ntp_frac, |
| uint32_t timestamp) |
| : ntp_time(ntp_secs, ntp_frac), rtp_timestamp(timestamp) {} |
| |
| bool RtpToNtpEstimator::RtcpMeasurement::IsEqual( |
| const RtcpMeasurement& other) const { |
| // Use || since two equal timestamps will result in zero frequency and in |
| // RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency. |
| return (ntp_time == other.ntp_time) || (rtp_timestamp == other.rtp_timestamp); |
| } |
| |
| // Class for converting an RTP timestamp to the NTP domain. |
| RtpToNtpEstimator::RtpToNtpEstimator() : consecutive_invalid_samples_(0) {} |
| RtpToNtpEstimator::~RtpToNtpEstimator() {} |
| |
| void RtpToNtpEstimator::UpdateParameters() { |
| if (measurements_.size() != kNumRtcpReportsToUse) |
| return; |
| |
| int64_t timestamp_new = measurements_.front().rtp_timestamp; |
| int64_t timestamp_old = measurements_.back().rtp_timestamp; |
| if (!CompensateForWrapAround(timestamp_new, timestamp_old, ×tamp_new)) |
| return; |
| |
| int64_t ntp_ms_new = measurements_.front().ntp_time.ToMs(); |
| int64_t ntp_ms_old = measurements_.back().ntp_time.ToMs(); |
| |
| if (!CalculateFrequency(ntp_ms_new, timestamp_new, ntp_ms_old, timestamp_old, |
| ¶ms_.frequency_khz)) { |
| return; |
| } |
| params_.offset_ms = timestamp_new - params_.frequency_khz * ntp_ms_new; |
| params_.calculated = true; |
| } |
| |
| bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs, |
| uint32_t ntp_frac, |
| uint32_t rtp_timestamp, |
| bool* new_rtcp_sr) { |
| *new_rtcp_sr = false; |
| |
| RtcpMeasurement new_measurement(ntp_secs, ntp_frac, rtp_timestamp); |
| if (Contains(measurements_, new_measurement)) { |
| // RTCP SR report already added. |
| return true; |
| } |
| if (!new_measurement.ntp_time.Valid()) |
| return false; |
| |
| int64_t ntp_ms_new = new_measurement.ntp_time.ToMs(); |
| bool invalid_sample = false; |
| for (const auto& measurement : measurements_) { |
| if (ntp_ms_new <= measurement.ntp_time.ToMs()) { |
| // Old report. |
| invalid_sample = true; |
| break; |
| } |
| int64_t timestamp_new = new_measurement.rtp_timestamp; |
| if (!CompensateForWrapAround(timestamp_new, measurement.rtp_timestamp, |
| ×tamp_new)) { |
| invalid_sample = true; |
| break; |
| } |
| if (timestamp_new <= measurement.rtp_timestamp) { |
| LOG(LS_WARNING) |
| << "Newer RTCP SR report with older RTP timestamp, dropping"; |
| invalid_sample = true; |
| break; |
| } |
| } |
| if (invalid_sample) { |
| ++consecutive_invalid_samples_; |
| if (consecutive_invalid_samples_ < kMaxInvalidSamples) { |
| return false; |
| } |
| LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " |
| "clearing measurements."; |
| measurements_.clear(); |
| } |
| consecutive_invalid_samples_ = 0; |
| |
| // Insert new RTCP SR report. |
| if (measurements_.size() == kNumRtcpReportsToUse) |
| measurements_.pop_back(); |
| |
| measurements_.push_front(new_measurement); |
| *new_rtcp_sr = true; |
| |
| // List updated, calculate new parameters. |
| UpdateParameters(); |
| return true; |
| } |
| |
| bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp, |
| int64_t* rtp_timestamp_ms) const { |
| if (!params_.calculated || measurements_.empty()) |
| return false; |
| |
| uint32_t rtp_timestamp_old = measurements_.back().rtp_timestamp; |
| int64_t rtp_timestamp_unwrapped; |
| if (!CompensateForWrapAround(rtp_timestamp, rtp_timestamp_old, |
| &rtp_timestamp_unwrapped)) { |
| return false; |
| } |
| |
| // params_.calculated should not be true unless params_.frequency_khz has been |
| // set to something non-zero. |
| RTC_DCHECK_NE(params_.frequency_khz, 0.0); |
| double rtp_ms = |
| (static_cast<double>(rtp_timestamp_unwrapped) - params_.offset_ms) / |
| params_.frequency_khz + |
| 0.5f; |
| |
| if (rtp_ms < 0) |
| return false; |
| |
| *rtp_timestamp_ms = rtp_ms; |
| return true; |
| } |
| |
| int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) { |
| if (new_timestamp < old_timestamp) { |
| // This difference should be less than -2^31 if we have had a wrap around |
| // (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is |
| // cast to a int32_t, it should be positive. |
| if (static_cast<int32_t>(new_timestamp - old_timestamp) > 0) { |
| // Forward wrap around. |
| return 1; |
| } |
| } else if (static_cast<int32_t>(old_timestamp - new_timestamp) > 0) { |
| // This difference should be less than -2^31 if we have had a backward wrap |
| // around. Since it is cast to a int32_t, it should be positive. |
| return -1; |
| } |
| return 0; |
| } |
| |
| } // namespace webrtc |