|  | /* | 
|  | *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "api/array_view.h" | 
|  | #include "api/optional.h" | 
|  | #include "modules/audio_device/audio_device_impl.h" | 
|  | #include "modules/audio_device/include/audio_device.h" | 
|  | #include "modules/audio_device/include/mock_audio_transport.h" | 
|  | #include "rtc_base/buffer.h" | 
|  | #include "rtc_base/criticalsection.h" | 
|  | #include "rtc_base/event.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/numerics/safe_conversions.h" | 
|  | #include "rtc_base/race_checker.h" | 
|  | #include "rtc_base/scoped_ref_ptr.h" | 
|  | #include "rtc_base/thread_annotations.h" | 
|  | #include "rtc_base/thread_checker.h" | 
|  | #include "rtc_base/timeutils.h" | 
|  | #include "test/gmock.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | using ::testing::_; | 
|  | using ::testing::AtLeast; | 
|  | using ::testing::Ge; | 
|  | using ::testing::Invoke; | 
|  | using ::testing::NiceMock; | 
|  | using ::testing::NotNull; | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | // #define ENABLE_DEBUG_PRINTF | 
|  | #ifdef ENABLE_DEBUG_PRINTF | 
|  | #define PRINTD(...) fprintf(stderr, __VA_ARGS__); | 
|  | #else | 
|  | #define PRINTD(...) ((void)0) | 
|  | #endif | 
|  | #define PRINT(...) fprintf(stderr, __VA_ARGS__); | 
|  |  | 
|  | // Don't run these tests in combination with sanitizers. | 
|  | #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) | 
|  | #define SKIP_TEST_IF_NOT(requirements_satisfied) \ | 
|  | do {                                           \ | 
|  | if (!requirements_satisfied) {               \ | 
|  | return;                                    \ | 
|  | }                                            \ | 
|  | } while (false) | 
|  | #else | 
|  | // Or if other audio-related requirements are not met. | 
|  | #define SKIP_TEST_IF_NOT(requirements_satisfied) \ | 
|  | do {                                           \ | 
|  | return;                                      \ | 
|  | } while (false) | 
|  | #endif | 
|  |  | 
|  | // Number of callbacks (input or output) the tests waits for before we set | 
|  | // an event indicating that the test was OK. | 
|  | static constexpr size_t kNumCallbacks = 10; | 
|  | // Max amount of time we wait for an event to be set while counting callbacks. | 
|  | static constexpr size_t kTestTimeOutInMilliseconds = 10 * 1000; | 
|  | // Average number of audio callbacks per second assuming 10ms packet size. | 
|  | static constexpr size_t kNumCallbacksPerSecond = 100; | 
|  | // Run the full-duplex test during this time (unit is in seconds). | 
|  | static constexpr size_t kFullDuplexTimeInSec = 5; | 
|  | // Length of round-trip latency measurements. Number of deteced impulses | 
|  | // shall be kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1 since the | 
|  | // last transmitted pulse is not used. | 
|  | static constexpr size_t kMeasureLatencyTimeInSec = 10; | 
|  | // Sets the number of impulses per second in the latency test. | 
|  | static constexpr size_t kImpulseFrequencyInHz = 1; | 
|  | // Utilized in round-trip latency measurements to avoid capturing noise samples. | 
|  | static constexpr int kImpulseThreshold = 1000; | 
|  |  | 
|  | enum class TransportType { | 
|  | kInvalid, | 
|  | kPlay, | 
|  | kRecord, | 
|  | kPlayAndRecord, | 
|  | }; | 
|  |  | 
|  | // Interface for processing the audio stream. Real implementations can e.g. | 
|  | // run audio in loopback, read audio from a file or perform latency | 
|  | // measurements. | 
|  | class AudioStream { | 
|  | public: | 
|  | virtual void Write(rtc::ArrayView<const int16_t> source, size_t channels) = 0; | 
|  | virtual void Read(rtc::ArrayView<int16_t> destination, size_t channels) = 0; | 
|  |  | 
|  | virtual ~AudioStream() = default; | 
|  | }; | 
|  |  | 
|  | // Converts index corresponding to position within a 10ms buffer into a | 
|  | // delay value in milliseconds. | 
|  | // Example: index=240, frames_per_10ms_buffer=480 => 5ms as output. | 
|  | int IndexToMilliseconds(size_t index, size_t frames_per_10ms_buffer) { | 
|  | return rtc::checked_cast<int>( | 
|  | 10.0 * (static_cast<double>(index) / frames_per_10ms_buffer) + 0.5); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Simple first in first out (FIFO) class that wraps a list of 16-bit audio | 
|  | // buffers of fixed size and allows Write and Read operations. The idea is to | 
|  | // store recorded audio buffers (using Write) and then read (using Read) these | 
|  | // stored buffers with as short delay as possible when the audio layer needs | 
|  | // data to play out. The number of buffers in the FIFO will stabilize under | 
|  | // normal conditions since there will be a balance between Write and Read calls. | 
|  | // The container is a std::list container and access is protected with a lock | 
|  | // since both sides (playout and recording) are driven by its own thread. | 
|  | // Note that, we know by design that the size of the audio buffer will not | 
|  | // change over time and that both sides will use the same size. | 
|  | class FifoAudioStream : public AudioStream { | 
|  | public: | 
|  | void Write(rtc::ArrayView<const int16_t> source, size_t channels) override { | 
|  | EXPECT_EQ(channels, 1u); | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | const size_t size = [&] { | 
|  | rtc::CritScope lock(&lock_); | 
|  | fifo_.push_back(Buffer16(source.data(), source.size())); | 
|  | return fifo_.size(); | 
|  | }(); | 
|  | if (size > max_size_) { | 
|  | max_size_ = size; | 
|  | } | 
|  | // Add marker once per second to signal that audio is active. | 
|  | if (write_count_++ % 100 == 0) { | 
|  | PRINT("."); | 
|  | } | 
|  | written_elements_ += size; | 
|  | } | 
|  |  | 
|  | void Read(rtc::ArrayView<int16_t> destination, size_t channels) override { | 
|  | EXPECT_EQ(channels, 1u); | 
|  | rtc::CritScope lock(&lock_); | 
|  | if (fifo_.empty()) { | 
|  | std::fill(destination.begin(), destination.end(), 0); | 
|  | } else { | 
|  | const Buffer16& buffer = fifo_.front(); | 
|  | RTC_CHECK_EQ(buffer.size(), destination.size()); | 
|  | std::copy(buffer.begin(), buffer.end(), destination.begin()); | 
|  | fifo_.pop_front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t size() const { | 
|  | rtc::CritScope lock(&lock_); | 
|  | return fifo_.size(); | 
|  | } | 
|  |  | 
|  | size_t max_size() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | return max_size_; | 
|  | } | 
|  |  | 
|  | size_t average_size() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | return 0.5 + static_cast<float>(written_elements_ / write_count_); | 
|  | } | 
|  |  | 
|  | using Buffer16 = rtc::BufferT<int16_t>; | 
|  |  | 
|  | rtc::CriticalSection lock_; | 
|  | rtc::RaceChecker race_checker_; | 
|  |  | 
|  | std::list<Buffer16> fifo_ RTC_GUARDED_BY(lock_); | 
|  | size_t write_count_ RTC_GUARDED_BY(race_checker_) = 0; | 
|  | size_t max_size_ RTC_GUARDED_BY(race_checker_) = 0; | 
|  | size_t written_elements_ RTC_GUARDED_BY(race_checker_) = 0; | 
|  | }; | 
|  |  | 
|  | // Inserts periodic impulses and measures the latency between the time of | 
|  | // transmission and time of receiving the same impulse. | 
|  | class LatencyAudioStream : public AudioStream { | 
|  | public: | 
|  | LatencyAudioStream() { | 
|  | // Delay thread checkers from being initialized until first callback from | 
|  | // respective thread. | 
|  | read_thread_checker_.DetachFromThread(); | 
|  | write_thread_checker_.DetachFromThread(); | 
|  | } | 
|  |  | 
|  | // Insert periodic impulses in first two samples of |destination|. | 
|  | void Read(rtc::ArrayView<int16_t> destination, size_t channels) override { | 
|  | RTC_DCHECK_RUN_ON(&read_thread_checker_); | 
|  | EXPECT_EQ(channels, 1u); | 
|  | if (read_count_ == 0) { | 
|  | PRINT("["); | 
|  | } | 
|  | read_count_++; | 
|  | std::fill(destination.begin(), destination.end(), 0); | 
|  | if (read_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { | 
|  | PRINT("."); | 
|  | { | 
|  | rtc::CritScope lock(&lock_); | 
|  | if (!pulse_time_) { | 
|  | pulse_time_ = rtc::TimeMillis(); | 
|  | } | 
|  | } | 
|  | constexpr int16_t impulse = std::numeric_limits<int16_t>::max(); | 
|  | std::fill_n(destination.begin(), 2, impulse); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect received impulses in |source|, derive time between transmission and | 
|  | // detection and add the calculated delay to list of latencies. | 
|  | void Write(rtc::ArrayView<const int16_t> source, size_t channels) override { | 
|  | EXPECT_EQ(channels, 1u); | 
|  | RTC_DCHECK_RUN_ON(&write_thread_checker_); | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | rtc::CritScope lock(&lock_); | 
|  | write_count_++; | 
|  | if (!pulse_time_) { | 
|  | // Avoid detection of new impulse response until a new impulse has | 
|  | // been transmitted (sets |pulse_time_| to value larger than zero). | 
|  | return; | 
|  | } | 
|  | // Find index (element position in vector) of the max element. | 
|  | const size_t index_of_max = | 
|  | std::max_element(source.begin(), source.end()) - source.begin(); | 
|  | // Derive time between transmitted pulse and received pulse if the level | 
|  | // is high enough (removes noise). | 
|  | const size_t max = source[index_of_max]; | 
|  | if (max > kImpulseThreshold) { | 
|  | PRINTD("(%zu, %zu)", max, index_of_max); | 
|  | int64_t now_time = rtc::TimeMillis(); | 
|  | int extra_delay = IndexToMilliseconds(index_of_max, source.size()); | 
|  | PRINTD("[%d]", rtc::checked_cast<int>(now_time - pulse_time_)); | 
|  | PRINTD("[%d]", extra_delay); | 
|  | // Total latency is the difference between transmit time and detection | 
|  | // tome plus the extra delay within the buffer in which we detected the | 
|  | // received impulse. It is transmitted at sample 0 but can be received | 
|  | // at sample N where N > 0. The term |extra_delay| accounts for N and it | 
|  | // is a value between 0 and 10ms. | 
|  | latencies_.push_back(now_time - *pulse_time_ + extra_delay); | 
|  | pulse_time_.reset(); | 
|  | } else { | 
|  | PRINTD("-"); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t num_latency_values() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | return latencies_.size(); | 
|  | } | 
|  |  | 
|  | int min_latency() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return *std::min_element(latencies_.begin(), latencies_.end()); | 
|  | } | 
|  |  | 
|  | int max_latency() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return *std::max_element(latencies_.begin(), latencies_.end()); | 
|  | } | 
|  |  | 
|  | int average_latency() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return 0.5 + static_cast<double>( | 
|  | std::accumulate(latencies_.begin(), latencies_.end(), 0)) / | 
|  | latencies_.size(); | 
|  | } | 
|  |  | 
|  | void PrintResults() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); | 
|  | PRINT("] "); | 
|  | for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { | 
|  | PRINTD("%d ", *it); | 
|  | } | 
|  | PRINT("\n"); | 
|  | PRINT("[..........] [min, max, avg]=[%d, %d, %d] ms\n", min_latency(), | 
|  | max_latency(), average_latency()); | 
|  | } | 
|  |  | 
|  | rtc::CriticalSection lock_; | 
|  | rtc::RaceChecker race_checker_; | 
|  | rtc::ThreadChecker read_thread_checker_; | 
|  | rtc::ThreadChecker write_thread_checker_; | 
|  |  | 
|  | rtc::Optional<int64_t> pulse_time_ RTC_GUARDED_BY(lock_); | 
|  | std::vector<int> latencies_ RTC_GUARDED_BY(race_checker_); | 
|  | size_t read_count_ RTC_GUARDED_BY(read_thread_checker_) = 0; | 
|  | size_t write_count_ RTC_GUARDED_BY(write_thread_checker_) = 0; | 
|  | }; | 
|  |  | 
|  | // Mocks the AudioTransport object and proxies actions for the two callbacks | 
|  | // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations | 
|  | // of AudioStreamInterface. | 
|  | class MockAudioTransport : public test::MockAudioTransport { | 
|  | public: | 
|  | explicit MockAudioTransport(TransportType type) : type_(type) {} | 
|  | ~MockAudioTransport() {} | 
|  |  | 
|  | // Set default actions of the mock object. We are delegating to fake | 
|  | // implementation where the number of callbacks is counted and an event | 
|  | // is set after a certain number of callbacks. Audio parameters are also | 
|  | // checked. | 
|  | void HandleCallbacks(rtc::Event* event, | 
|  | AudioStream* audio_stream, | 
|  | int num_callbacks) { | 
|  | event_ = event; | 
|  | audio_stream_ = audio_stream; | 
|  | num_callbacks_ = num_callbacks; | 
|  | if (play_mode()) { | 
|  | ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) | 
|  | .WillByDefault( | 
|  | Invoke(this, &MockAudioTransport::RealNeedMorePlayData)); | 
|  | } | 
|  | if (rec_mode()) { | 
|  | ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) | 
|  | .WillByDefault( | 
|  | Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t RealRecordedDataIsAvailable(const void* audio_buffer, | 
|  | const size_t samples_per_channel, | 
|  | const size_t bytes_per_frame, | 
|  | const size_t channels, | 
|  | const uint32_t sample_rate, | 
|  | const uint32_t total_delay_ms, | 
|  | const int32_t clock_drift, | 
|  | const uint32_t current_mic_level, | 
|  | const bool typing_status, | 
|  | uint32_t& new_mic_level) { | 
|  | EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; | 
|  | RTC_LOG(INFO) << "+"; | 
|  | // Store audio parameters once in the first callback. For all other | 
|  | // callbacks, verify that the provided audio parameters are maintained and | 
|  | // that each callback corresponds to 10ms for any given sample rate. | 
|  | if (!record_parameters_.is_complete()) { | 
|  | record_parameters_.reset(sample_rate, channels, samples_per_channel); | 
|  | } else { | 
|  | EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_buffer()); | 
|  | EXPECT_EQ(bytes_per_frame, record_parameters_.GetBytesPerFrame()); | 
|  | EXPECT_EQ(channels, record_parameters_.channels()); | 
|  | EXPECT_EQ(static_cast<int>(sample_rate), | 
|  | record_parameters_.sample_rate()); | 
|  | EXPECT_EQ(samples_per_channel, | 
|  | record_parameters_.frames_per_10ms_buffer()); | 
|  | } | 
|  | rec_count_++; | 
|  | // Write audio data to audio stream object if one has been injected. | 
|  | if (audio_stream_) { | 
|  | audio_stream_->Write( | 
|  | rtc::MakeArrayView(static_cast<const int16_t*>(audio_buffer), | 
|  | samples_per_channel * channels), | 
|  | channels); | 
|  | } | 
|  | // Signal the event after given amount of callbacks. | 
|  | if (ReceivedEnoughCallbacks()) { | 
|  | event_->Set(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t RealNeedMorePlayData(const size_t samples_per_channel, | 
|  | const size_t bytes_per_frame, | 
|  | const size_t channels, | 
|  | const uint32_t sample_rate, | 
|  | void* audio_buffer, | 
|  | size_t& samples_per_channel_out, | 
|  | int64_t* elapsed_time_ms, | 
|  | int64_t* ntp_time_ms) { | 
|  | EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; | 
|  | RTC_LOG(INFO) << "-"; | 
|  | // Store audio parameters once in the first callback. For all other | 
|  | // callbacks, verify that the provided audio parameters are maintained and | 
|  | // that each callback corresponds to 10ms for any given sample rate. | 
|  | if (!playout_parameters_.is_complete()) { | 
|  | playout_parameters_.reset(sample_rate, channels, samples_per_channel); | 
|  | } else { | 
|  | EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_buffer()); | 
|  | EXPECT_EQ(bytes_per_frame, playout_parameters_.GetBytesPerFrame()); | 
|  | EXPECT_EQ(channels, playout_parameters_.channels()); | 
|  | EXPECT_EQ(static_cast<int>(sample_rate), | 
|  | playout_parameters_.sample_rate()); | 
|  | EXPECT_EQ(samples_per_channel, | 
|  | playout_parameters_.frames_per_10ms_buffer()); | 
|  | } | 
|  | play_count_++; | 
|  | samples_per_channel_out = samples_per_channel; | 
|  | // Read audio data from audio stream object if one has been injected. | 
|  | if (audio_stream_) { | 
|  | audio_stream_->Read( | 
|  | rtc::MakeArrayView(static_cast<int16_t*>(audio_buffer), | 
|  | samples_per_channel * channels), | 
|  | channels); | 
|  | } else { | 
|  | // Fill the audio buffer with zeros to avoid disturbing audio. | 
|  | const size_t num_bytes = samples_per_channel * bytes_per_frame; | 
|  | std::memset(audio_buffer, 0, num_bytes); | 
|  | } | 
|  | // Signal the event after given amount of callbacks. | 
|  | if (ReceivedEnoughCallbacks()) { | 
|  | event_->Set(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool ReceivedEnoughCallbacks() { | 
|  | bool recording_done = false; | 
|  | if (rec_mode()) { | 
|  | recording_done = rec_count_ >= num_callbacks_; | 
|  | } else { | 
|  | recording_done = true; | 
|  | } | 
|  | bool playout_done = false; | 
|  | if (play_mode()) { | 
|  | playout_done = play_count_ >= num_callbacks_; | 
|  | } else { | 
|  | playout_done = true; | 
|  | } | 
|  | return recording_done && playout_done; | 
|  | } | 
|  |  | 
|  | bool play_mode() const { | 
|  | return type_ == TransportType::kPlay || | 
|  | type_ == TransportType::kPlayAndRecord; | 
|  | } | 
|  |  | 
|  | bool rec_mode() const { | 
|  | return type_ == TransportType::kRecord || | 
|  | type_ == TransportType::kPlayAndRecord; | 
|  | } | 
|  |  | 
|  | private: | 
|  | TransportType type_ = TransportType::kInvalid; | 
|  | rtc::Event* event_ = nullptr; | 
|  | AudioStream* audio_stream_ = nullptr; | 
|  | size_t num_callbacks_ = 0; | 
|  | size_t play_count_ = 0; | 
|  | size_t rec_count_ = 0; | 
|  | AudioParameters playout_parameters_; | 
|  | AudioParameters record_parameters_; | 
|  | }; | 
|  |  | 
|  | // AudioDeviceTest test fixture. | 
|  | class AudioDeviceTest : public ::testing::Test { | 
|  | protected: | 
|  | AudioDeviceTest() : event_(false, false) { | 
|  | #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) && \ | 
|  | !defined(WEBRTC_DUMMY_AUDIO_BUILD) | 
|  | rtc::LogMessage::LogToDebug(rtc::LS_INFO); | 
|  | // Add extra logging fields here if needed for debugging. | 
|  | // rtc::LogMessage::LogTimestamps(); | 
|  | // rtc::LogMessage::LogThreads(); | 
|  | audio_device_ = | 
|  | AudioDeviceModule::Create(AudioDeviceModule::kPlatformDefaultAudio); | 
|  | EXPECT_NE(audio_device_.get(), nullptr); | 
|  | AudioDeviceModule::AudioLayer audio_layer; | 
|  | int got_platform_audio_layer = | 
|  | audio_device_->ActiveAudioLayer(&audio_layer); | 
|  | // First, ensure that a valid audio layer can be activated. | 
|  | if (got_platform_audio_layer != 0) { | 
|  | requirements_satisfied_ = false; | 
|  | } | 
|  | // Next, verify that the ADM can be initialized. | 
|  | if (requirements_satisfied_) { | 
|  | requirements_satisfied_ = (audio_device_->Init() == 0); | 
|  | } | 
|  | // Finally, ensure that at least one valid device exists in each direction. | 
|  | if (requirements_satisfied_) { | 
|  | const int16_t num_playout_devices = audio_device_->PlayoutDevices(); | 
|  | const int16_t num_record_devices = audio_device_->RecordingDevices(); | 
|  | requirements_satisfied_ = | 
|  | num_playout_devices > 0 && num_record_devices > 0; | 
|  | } | 
|  | #else | 
|  | requirements_satisfied_ = false; | 
|  | #endif | 
|  | if (requirements_satisfied_) { | 
|  | EXPECT_EQ(0, audio_device_->SetPlayoutDevice(0)); | 
|  | EXPECT_EQ(0, audio_device_->InitSpeaker()); | 
|  | EXPECT_EQ(0, audio_device_->SetRecordingDevice(0)); | 
|  | EXPECT_EQ(0, audio_device_->InitMicrophone()); | 
|  | EXPECT_EQ(0, audio_device_->StereoPlayoutIsAvailable(&stereo_playout_)); | 
|  | EXPECT_EQ(0, audio_device_->SetStereoPlayout(stereo_playout_)); | 
|  | // Avoid asking for input stereo support and always record in mono | 
|  | // since asking can cause issues in combination with remote desktop. | 
|  | // See https://bugs.chromium.org/p/webrtc/issues/detail?id=7397 for | 
|  | // details. | 
|  | EXPECT_EQ(0, audio_device_->SetStereoRecording(false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual ~AudioDeviceTest() { | 
|  | if (audio_device_) { | 
|  | EXPECT_EQ(0, audio_device_->Terminate()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool requirements_satisfied() const { return requirements_satisfied_; } | 
|  | rtc::Event* event() { return &event_; } | 
|  |  | 
|  | const rtc::scoped_refptr<AudioDeviceModule>& audio_device() const { | 
|  | return audio_device_; | 
|  | } | 
|  |  | 
|  | void StartPlayout() { | 
|  | EXPECT_FALSE(audio_device()->Playing()); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); | 
|  | EXPECT_EQ(0, audio_device()->StartPlayout()); | 
|  | EXPECT_TRUE(audio_device()->Playing()); | 
|  | } | 
|  |  | 
|  | void StopPlayout() { | 
|  | EXPECT_EQ(0, audio_device()->StopPlayout()); | 
|  | EXPECT_FALSE(audio_device()->Playing()); | 
|  | EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); | 
|  | } | 
|  |  | 
|  | void StartRecording() { | 
|  | EXPECT_FALSE(audio_device()->Recording()); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | EXPECT_TRUE(audio_device()->RecordingIsInitialized()); | 
|  | EXPECT_EQ(0, audio_device()->StartRecording()); | 
|  | EXPECT_TRUE(audio_device()->Recording()); | 
|  | } | 
|  |  | 
|  | void StopRecording() { | 
|  | EXPECT_EQ(0, audio_device()->StopRecording()); | 
|  | EXPECT_FALSE(audio_device()->Recording()); | 
|  | EXPECT_FALSE(audio_device()->RecordingIsInitialized()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool requirements_satisfied_ = true; | 
|  | rtc::Event event_; | 
|  | rtc::scoped_refptr<AudioDeviceModule> audio_device_; | 
|  | bool stereo_playout_ = false; | 
|  | }; | 
|  |  | 
|  | // Uses the test fixture to create, initialize and destruct the ADM. | 
|  | TEST_F(AudioDeviceTest, ConstructDestruct) {} | 
|  |  | 
|  | TEST_F(AudioDeviceTest, InitTerminate) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | // Initialization is part of the test fixture. | 
|  | EXPECT_TRUE(audio_device()->Initialized()); | 
|  | EXPECT_EQ(0, audio_device()->Terminate()); | 
|  | EXPECT_FALSE(audio_device()->Initialized()); | 
|  | } | 
|  |  | 
|  | // Tests Start/Stop playout without any registered audio callback. | 
|  | TEST_F(AudioDeviceTest, StartStopPlayout) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | StartPlayout(); | 
|  | StopPlayout(); | 
|  | StartPlayout(); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Tests Start/Stop recording without any registered audio callback. | 
|  | TEST_F(AudioDeviceTest, StartStopRecording) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | StartRecording(); | 
|  | StopRecording(); | 
|  | StartRecording(); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Tests Init/Stop/Init recording without any registered audio callback. | 
|  | // See https://bugs.chromium.org/p/webrtc/issues/detail?id=8041 for details | 
|  | // on why this test is useful. | 
|  | TEST_F(AudioDeviceTest, InitStopInitRecording) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | EXPECT_TRUE(audio_device()->RecordingIsInitialized()); | 
|  | StopRecording(); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Tests Init/Stop/Init recording while playout is active. | 
|  | TEST_F(AudioDeviceTest, InitStopInitRecordingWhilePlaying) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | StartPlayout(); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | EXPECT_TRUE(audio_device()->RecordingIsInitialized()); | 
|  | StopRecording(); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | StopRecording(); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Tests Init/Stop/Init playout without any registered audio callback. | 
|  | TEST_F(AudioDeviceTest, InitStopInitPlayout) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); | 
|  | StopPlayout(); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Tests Init/Stop/Init playout while recording is active. | 
|  | TEST_F(AudioDeviceTest, InitStopInitPlayoutWhileRecording) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | StartRecording(); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); | 
|  | StopPlayout(); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | StopPlayout(); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Start playout and verify that the native audio layer starts asking for real | 
|  | // audio samples to play out using the NeedMorePlayData() callback. | 
|  | // Note that we can't add expectations on audio parameters in EXPECT_CALL | 
|  | // since parameter are not provided in the each callback. We therefore test and | 
|  | // verify the parameters in the fake audio transport implementation instead. | 
|  | TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | MockAudioTransport mock(TransportType::kPlay); | 
|  | mock.HandleCallbacks(event(), nullptr, kNumCallbacks); | 
|  | EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartPlayout(); | 
|  | event()->Wait(kTestTimeOutInMilliseconds); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Start recording and verify that the native audio layer starts providing real | 
|  | // audio samples using the RecordedDataIsAvailable() callback. | 
|  | TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | MockAudioTransport mock(TransportType::kRecord); | 
|  | mock.HandleCallbacks(event(), nullptr, kNumCallbacks); | 
|  | EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, | 
|  | false, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartRecording(); | 
|  | event()->Wait(kTestTimeOutInMilliseconds); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Start playout and recording (full-duplex audio) and verify that audio is | 
|  | // active in both directions. | 
|  | TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | MockAudioTransport mock(TransportType::kPlayAndRecord); | 
|  | mock.HandleCallbacks(event(), nullptr, kNumCallbacks); | 
|  | EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, | 
|  | false, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartPlayout(); | 
|  | StartRecording(); | 
|  | event()->Wait(kTestTimeOutInMilliseconds); | 
|  | StopRecording(); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Start playout and recording and store recorded data in an intermediate FIFO | 
|  | // buffer from which the playout side then reads its samples in the same order | 
|  | // as they were stored. Under ideal circumstances, a callback sequence would | 
|  | // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' | 
|  | // means 'packet played'. Under such conditions, the FIFO would contain max 1, | 
|  | // with an average somewhere in (0,1) depending on how long the packets are | 
|  | // buffered. However, under more realistic conditions, the size | 
|  | // of the FIFO will vary more due to an unbalance between the two sides. | 
|  | // This test tries to verify that the device maintains a balanced callback- | 
|  | // sequence by running in loopback for a few seconds while measuring the size | 
|  | // (max and average) of the FIFO. The size of the FIFO is increased by the | 
|  | // recording side and decreased by the playout side. | 
|  | TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | NiceMock<MockAudioTransport> mock(TransportType::kPlayAndRecord); | 
|  | FifoAudioStream audio_stream; | 
|  | mock.HandleCallbacks(event(), &audio_stream, | 
|  | kFullDuplexTimeInSec * kNumCallbacksPerSecond); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | // Run both sides in mono to make the loopback packet handling less complex. | 
|  | // The test works for stereo as well; the only requirement is that both sides | 
|  | // use the same configuration. | 
|  | EXPECT_EQ(0, audio_device()->SetStereoPlayout(false)); | 
|  | EXPECT_EQ(0, audio_device()->SetStereoRecording(false)); | 
|  | StartPlayout(); | 
|  | StartRecording(); | 
|  | event()->Wait(static_cast<int>( | 
|  | std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec))); | 
|  | StopRecording(); | 
|  | StopPlayout(); | 
|  | // This thresholds is set rather high to accommodate differences in hardware | 
|  | // in several devices. The main idea is to capture cases where a very large | 
|  | // latency is built up. See http://bugs.webrtc.org/7744 for examples on | 
|  | // bots where relatively large average latencies can happen. | 
|  | EXPECT_LE(audio_stream.average_size(), 25u); | 
|  | PRINT("\n"); | 
|  | } | 
|  |  | 
|  | // Measures loopback latency and reports the min, max and average values for | 
|  | // a full duplex audio session. | 
|  | // The latency is measured like so: | 
|  | // - Insert impulses periodically on the output side. | 
|  | // - Detect the impulses on the input side. | 
|  | // - Measure the time difference between the transmit time and receive time. | 
|  | // - Store time differences in a vector and calculate min, max and average. | 
|  | // This test needs the '--gtest_also_run_disabled_tests' flag to run and also | 
|  | // some sort of audio feedback loop. E.g. a headset where the mic is placed | 
|  | // close to the speaker to ensure highest possible echo. It is also recommended | 
|  | // to run the test at highest possible output volume. | 
|  | TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { | 
|  | SKIP_TEST_IF_NOT(requirements_satisfied()); | 
|  | NiceMock<MockAudioTransport> mock(TransportType::kPlayAndRecord); | 
|  | LatencyAudioStream audio_stream; | 
|  | mock.HandleCallbacks(event(), &audio_stream, | 
|  | kMeasureLatencyTimeInSec * kNumCallbacksPerSecond); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | EXPECT_EQ(0, audio_device()->SetStereoPlayout(false)); | 
|  | EXPECT_EQ(0, audio_device()->SetStereoRecording(false)); | 
|  | StartPlayout(); | 
|  | StartRecording(); | 
|  | event()->Wait(static_cast<int>( | 
|  | std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec))); | 
|  | StopRecording(); | 
|  | StopPlayout(); | 
|  | // Verify that the correct number of transmitted impulses are detected. | 
|  | EXPECT_EQ(audio_stream.num_latency_values(), | 
|  | static_cast<size_t>( | 
|  | kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1)); | 
|  | // Print out min, max and average delay values for debugging purposes. | 
|  | audio_stream.PrintResults(); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |