blob: f336c392b4ee7039623668221d84c805fb6a9588 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_delay_controller.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "api/audio/echo_canceller3_config.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/echo_path_delay_estimator.h"
#include "modules/audio_processing/aec3/render_delay_controller_metrics.h"
#include "modules/audio_processing/aec3/skew_estimator.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/constructormagic.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
int GetSkewHysteresis(const EchoCanceller3Config& config) {
if (field_trial::IsEnabled("WebRTC-Aec3EnforceSkewHysteresis1")) {
return 1;
}
if (field_trial::IsEnabled("WebRTC-Aec3EnforceSkewHysteresis2")) {
return 2;
}
return static_cast<int>(config.delay.skew_hysteresis_blocks);
}
bool UseOffsetBlocks() {
return field_trial::IsEnabled("WebRTC-Aec3UseOffsetBlocks");
}
constexpr int kSkewHistorySizeLog2 = 8;
class RenderDelayControllerImpl final : public RenderDelayController {
public:
RenderDelayControllerImpl(const EchoCanceller3Config& config,
int non_causal_offset,
int sample_rate_hz);
~RenderDelayControllerImpl() override;
void Reset() override;
void LogRenderCall() override;
absl::optional<DelayEstimate> GetDelay(
const DownsampledRenderBuffer& render_buffer,
size_t render_delay_buffer_delay,
const absl::optional<int>& echo_remover_delay,
rtc::ArrayView<const float> capture) override;
private:
static int instance_count_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const int delay_headroom_blocks_;
const int hysteresis_limit_1_blocks_;
const int hysteresis_limit_2_blocks_;
const int skew_hysteresis_blocks_;
const bool use_offset_blocks_;
absl::optional<DelayEstimate> delay_;
EchoPathDelayEstimator delay_estimator_;
std::vector<float> delay_buf_;
int delay_buf_index_ = 0;
RenderDelayControllerMetrics metrics_;
SkewEstimator skew_estimator_;
absl::optional<DelayEstimate> delay_samples_;
absl::optional<int> skew_;
int previous_offset_blocks_ = 0;
int skew_shift_reporting_counter_ = 0;
size_t capture_call_counter_ = 0;
int delay_change_counter_ = 0;
size_t soft_reset_counter_ = 0;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(RenderDelayControllerImpl);
};
DelayEstimate ComputeBufferDelay(
const absl::optional<DelayEstimate>& current_delay,
int delay_headroom_blocks,
int hysteresis_limit_1_blocks,
int hysteresis_limit_2_blocks,
int offset_blocks,
DelayEstimate estimated_delay) {
// The below division is not exact and the truncation is intended.
const int echo_path_delay_blocks = estimated_delay.delay >> kBlockSizeLog2;
// Compute the buffer delay increase required to achieve the desired latency.
size_t new_delay_blocks = std::max(
echo_path_delay_blocks + offset_blocks - delay_headroom_blocks, 0);
// Add hysteresis.
if (current_delay) {
size_t current_delay_blocks = current_delay->delay;
if (new_delay_blocks > current_delay_blocks) {
if (new_delay_blocks <=
current_delay_blocks + hysteresis_limit_1_blocks) {
new_delay_blocks = current_delay_blocks;
}
} else if (new_delay_blocks < current_delay_blocks) {
size_t hysteresis_limit = std::max(
static_cast<int>(current_delay_blocks) - hysteresis_limit_2_blocks,
0);
if (new_delay_blocks >= hysteresis_limit) {
new_delay_blocks = current_delay_blocks;
}
}
}
DelayEstimate new_delay = estimated_delay;
new_delay.delay = new_delay_blocks;
return new_delay;
}
int RenderDelayControllerImpl::instance_count_ = 0;
RenderDelayControllerImpl::RenderDelayControllerImpl(
const EchoCanceller3Config& config,
int non_causal_offset,
int sample_rate_hz)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
delay_headroom_blocks_(
static_cast<int>(config.delay.delay_headroom_blocks)),
hysteresis_limit_1_blocks_(
static_cast<int>(config.delay.hysteresis_limit_1_blocks)),
hysteresis_limit_2_blocks_(
static_cast<int>(config.delay.hysteresis_limit_2_blocks)),
skew_hysteresis_blocks_(GetSkewHysteresis(config)),
use_offset_blocks_(UseOffsetBlocks()),
delay_estimator_(data_dumper_.get(), config),
delay_buf_(kBlockSize * non_causal_offset, 0.f),
skew_estimator_(kSkewHistorySizeLog2) {
RTC_DCHECK(ValidFullBandRate(sample_rate_hz));
delay_estimator_.LogDelayEstimationProperties(sample_rate_hz,
delay_buf_.size());
}
RenderDelayControllerImpl::~RenderDelayControllerImpl() = default;
void RenderDelayControllerImpl::Reset() {
delay_ = absl::nullopt;
delay_samples_ = absl::nullopt;
skew_ = absl::nullopt;
previous_offset_blocks_ = 0;
std::fill(delay_buf_.begin(), delay_buf_.end(), 0.f);
delay_estimator_.Reset(false);
skew_estimator_.Reset();
delay_change_counter_ = 0;
soft_reset_counter_ = 0;
}
void RenderDelayControllerImpl::LogRenderCall() {
skew_estimator_.LogRenderCall();
}
absl::optional<DelayEstimate> RenderDelayControllerImpl::GetDelay(
const DownsampledRenderBuffer& render_buffer,
size_t render_delay_buffer_delay,
const absl::optional<int>& echo_remover_delay,
rtc::ArrayView<const float> capture) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
++capture_call_counter_;
// Estimate the delay with a delayed capture.
RTC_DCHECK_LT(delay_buf_index_ + kBlockSize - 1, delay_buf_.size());
rtc::ArrayView<const float> capture_delayed(&delay_buf_[delay_buf_index_],
kBlockSize);
auto delay_samples =
delay_estimator_.EstimateDelay(render_buffer, capture_delayed);
// Overrule the delay estimator delay if the echo remover reports a delay.
if (echo_remover_delay) {
int total_echo_remover_delay_samples =
(render_delay_buffer_delay + *echo_remover_delay) * kBlockSize;
delay_samples = DelayEstimate(DelayEstimate::Quality::kRefined,
total_echo_remover_delay_samples);
}
std::copy(capture.begin(), capture.end(),
delay_buf_.begin() + delay_buf_index_);
delay_buf_index_ = (delay_buf_index_ + kBlockSize) % delay_buf_.size();
// Compute the latest skew update.
absl::optional<int> skew = skew_estimator_.GetSkewFromCapture();
if (delay_samples) {
// TODO(peah): Refactor the rest of the code to assume a kRefined estimate
// quality.
RTC_DCHECK(DelayEstimate::Quality::kRefined == delay_samples->quality);
if (!delay_samples_ || delay_samples->delay != delay_samples_->delay) {
delay_change_counter_ = 0;
}
if (delay_samples_) {
delay_samples_->blocks_since_last_change =
delay_samples_->delay == delay_samples->delay
? delay_samples_->blocks_since_last_change + 1
: 0;
delay_samples_->blocks_since_last_update = 0;
delay_samples_->delay = delay_samples->delay;
delay_samples_->quality = delay_samples->quality;
} else {
delay_samples_ = delay_samples;
}
} else {
if (delay_samples_) {
++delay_samples_->blocks_since_last_change;
++delay_samples_->blocks_since_last_update;
}
}
if (delay_change_counter_ < 2 * kNumBlocksPerSecond) {
++delay_change_counter_;
// If a new delay estimate is recently obtained, store the skew for that.
skew_ = skew;
} else {
// A reliable skew should have been obtained after 2 seconds.
RTC_DCHECK(skew_);
RTC_DCHECK(skew);
}
++soft_reset_counter_;
int offset_blocks = 0;
if (skew_ && skew && delay_samples_ &&
delay_samples_->quality == DelayEstimate::Quality::kRefined) {
// Compute the skew offset and add a margin.
offset_blocks = *skew_ - *skew;
if (abs(offset_blocks) <= skew_hysteresis_blocks_) {
offset_blocks = 0;
} else if (soft_reset_counter_ > 10 * kNumBlocksPerSecond) {
// Soft reset the delay estimator if there is a significant offset
// detected.
delay_estimator_.Reset(true);
soft_reset_counter_ = 0;
}
}
if (!use_offset_blocks_)
offset_blocks = 0;
// Log any changes in the skew.
skew_shift_reporting_counter_ =
std::max(0, skew_shift_reporting_counter_ - 1);
absl::optional<int> skew_shift =
skew_shift_reporting_counter_ == 0 &&
previous_offset_blocks_ != offset_blocks
? absl::optional<int>(offset_blocks - previous_offset_blocks_)
: absl::nullopt;
previous_offset_blocks_ = offset_blocks;
if (skew_shift) {
RTC_LOG(LS_WARNING) << "API call skew shift of " << *skew_shift
<< " blocks detected at capture block "
<< capture_call_counter_;
skew_shift_reporting_counter_ = 3 * kNumBlocksPerSecond;
}
if (delay_samples_) {
// Compute the render delay buffer delay.
delay_ = ComputeBufferDelay(
delay_, delay_headroom_blocks_, hysteresis_limit_1_blocks_,
hysteresis_limit_2_blocks_, offset_blocks, *delay_samples_);
}
metrics_.Update(delay_samples_ ? absl::optional<size_t>(delay_samples_->delay)
: absl::nullopt,
delay_ ? delay_->delay : 0, skew_shift);
data_dumper_->DumpRaw("aec3_render_delay_controller_delay",
delay_samples ? delay_samples->delay : 0);
data_dumper_->DumpRaw("aec3_render_delay_controller_buffer_delay",
delay_ ? delay_->delay : 0);
data_dumper_->DumpRaw("aec3_render_delay_controller_new_skew",
skew ? *skew : 0);
data_dumper_->DumpRaw("aec3_render_delay_controller_old_skew",
skew_ ? *skew_ : 0);
data_dumper_->DumpRaw("aec3_render_delay_controller_offset", offset_blocks);
return delay_;
}
} // namespace
RenderDelayController* RenderDelayController::Create(
const EchoCanceller3Config& config,
int non_causal_offset,
int sample_rate_hz) {
return new RenderDelayControllerImpl(config, non_causal_offset,
sample_rate_hz);
}
} // namespace webrtc