blob: 2a8e9bd5c3a2bbd0bf5241beeaf625e41bcb3b16 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
static const size_t kVector16Size = 9;
static const int16_t vector16[kVector16Size] = {1,
-15511,
4323,
1963,
WEBRTC_SPL_WORD16_MAX,
0,
WEBRTC_SPL_WORD16_MIN + 5,
-3333,
345};
TEST(SplTest, MacroTest) {
// Macros with inputs.
int A = 10;
int B = 21;
int a = -3;
int b = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B));
EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a));
EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B));
EXPECT_EQ(2147483651u, WEBRTC_SPL_UMUL(a, b));
b = WEBRTC_SPL_WORD16_MAX >> 1;
EXPECT_EQ(4294918147u, WEBRTC_SPL_UMUL_32_16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b));
a = b;
b = -3;
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b));
EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b));
EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b));
EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2));
EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A));
// Shifting with negative numbers allowed
int shift_amount = 1; // Workaround compiler warning using variable here.
// Positive means left shift
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, shift_amount));
// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1));
EXPECT_EQ(8191u, WEBRTC_SPL_RSHIFT_U32(a, 1));
EXPECT_EQ(1470, WEBRTC_SPL_RAND(A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b));
EXPECT_EQ(1073676289,
WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MAX));
EXPECT_EQ(1073709055, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD32_MAX));
EXPECT_EQ(1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MIN));
#ifdef WEBRTC_ARCH_ARM_V7
EXPECT_EQ(-1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#else
EXPECT_EQ(-1073741823, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#endif
}
TEST(SplTest, InlineTest) {
int16_t a16 = 121;
int16_t b16 = -17;
int32_t a32 = 111121;
int32_t b32 = -1711;
EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(a32));
EXPECT_EQ(0, WebRtcSpl_NormW32(0));
EXPECT_EQ(31, WebRtcSpl_NormW32(-1));
EXPECT_EQ(0, WebRtcSpl_NormW32(WEBRTC_SPL_WORD32_MIN));
EXPECT_EQ(14, WebRtcSpl_NormW32(a32));
EXPECT_EQ(0, WebRtcSpl_NormW16(0));
EXPECT_EQ(15, WebRtcSpl_NormW16(-1));
EXPECT_EQ(0, WebRtcSpl_NormW16(WEBRTC_SPL_WORD16_MIN));
EXPECT_EQ(4, WebRtcSpl_NormW16(b32));
for (int ii = 0; ii < 15; ++ii) {
int16_t value = 1 << ii;
EXPECT_EQ(14 - ii, WebRtcSpl_NormW16(value));
EXPECT_EQ(15 - ii, WebRtcSpl_NormW16(-value));
}
EXPECT_EQ(0, WebRtcSpl_NormU32(0u));
EXPECT_EQ(0, WebRtcSpl_NormU32(0xffffffff));
EXPECT_EQ(15, WebRtcSpl_NormU32(static_cast<uint32_t>(a32)));
EXPECT_EQ(104, WebRtcSpl_AddSatW16(a16, b16));
EXPECT_EQ(138, WebRtcSpl_SubSatW16(a16, b16));
}
TEST(SplTest, AddSubSatW32) {
static constexpr int32_t kAddSubArgs[] = {
INT32_MIN, INT32_MIN + 1, -3, -2, -1, 0, 1, -1, 2,
3, INT32_MAX - 1, INT32_MAX};
for (int32_t a : kAddSubArgs) {
for (int32_t b : kAddSubArgs) {
const int64_t sum = std::max<int64_t>(
INT32_MIN, std::min<int64_t>(INT32_MAX, static_cast<int64_t>(a) + b));
const int64_t diff = std::max<int64_t>(
INT32_MIN, std::min<int64_t>(INT32_MAX, static_cast<int64_t>(a) - b));
rtc::StringBuilder ss;
ss << a << " +/- " << b << ": sum " << sum << ", diff " << diff;
SCOPED_TRACE(ss.str());
EXPECT_EQ(sum, WebRtcSpl_AddSatW32(a, b));
EXPECT_EQ(diff, WebRtcSpl_SubSatW32(a, b));
}
}
}
TEST(SplTest, CountLeadingZeros32) {
EXPECT_EQ(32, WebRtcSpl_CountLeadingZeros32(0));
EXPECT_EQ(32, WebRtcSpl_CountLeadingZeros32_NotBuiltin(0));
for (int i = 0; i < 32; ++i) {
const uint32_t single_one = uint32_t{1} << i;
const uint32_t all_ones = 2 * single_one - 1;
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32(single_one));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32_NotBuiltin(single_one));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32(all_ones));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32_NotBuiltin(all_ones));
}
}
TEST(SplTest, CountLeadingZeros64) {
EXPECT_EQ(64, WebRtcSpl_CountLeadingZeros64(0));
EXPECT_EQ(64, WebRtcSpl_CountLeadingZeros64_NotBuiltin(0));
for (int i = 0; i < 64; ++i) {
const uint64_t single_one = uint64_t{1} << i;
const uint64_t all_ones = 2 * single_one - 1;
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64(single_one));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64_NotBuiltin(single_one));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64(all_ones));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64_NotBuiltin(all_ones));
}
}
// TODO(bugs.webrtc.org/345674544): Fix/enable.
#if defined(__has_feature) && __has_feature(undefined_behavior_sanitizer)
TEST(SplTest, DISABLED_MathOperationsTest) {
#else
TEST(SplTest, MathOperationsTest) {
#endif
int A = 1134567892;
int32_t num = 117;
int32_t den = -5;
uint16_t denU = 5;
EXPECT_EQ(33700, WebRtcSpl_Sqrt(A));
EXPECT_EQ(33683, WebRtcSpl_SqrtFloor(A));
EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (int16_t)den));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (int16_t)den));
EXPECT_EQ(23u, WebRtcSpl_DivU32U16(num, denU));
EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256));
}
TEST(SplTest, BasicArrayOperationsTest) {
const size_t kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
int32_t bTmp32[kVectorSize];
WebRtcSpl_MemSetW16(b16, 3, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b16[kk]);
}
WebRtcSpl_ZerosArrayW16(b16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b16[kk]);
}
WebRtcSpl_MemSetW32(b32, 3, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b32[kk]);
}
WebRtcSpl_ZerosArrayW32(b32, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b32[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
bTmp16[kk] = (int16_t)kk;
bTmp32[kk] = (int32_t)kk;
}
WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[kk], bTmp16[kk]);
}
// WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(b32[kk], bTmp32[kk]);
// }
WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16);
for (size_t kk = 0; kk < 2; ++kk) {
EXPECT_EQ(static_cast<int16_t>(kk + 2), bTmp16[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b32[kk] = B[kk];
b16[kk] = (int16_t)B[kk];
}
WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp32[kk]);
}
WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[3 - kk], bTmp16[kk]);
}
}
TEST(SplTest, MinMaxOperationsTest) {
const size_t kVectorSize = 17;
// Vectors to test the cases where minimum values have to be caught
// outside of the unrolled loops in ARM-Neon.
int16_t vector16[kVectorSize] = {-1,
7485,
0,
3333,
-18283,
0,
12334,
-29871,
988,
-3333,
345,
-456,
222,
999,
888,
8774,
WEBRTC_SPL_WORD16_MIN};
int32_t vector32[kVectorSize] = {-1,
0,
283211,
3333,
8712345,
0,
-3333,
89345,
-374585456,
222,
999,
122345334,
-12389756,
-987329871,
888,
-2,
WEBRTC_SPL_WORD32_MIN};
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MaxAbsElementW16(vector16, kVectorSize));
int16_t min_value, max_value;
WebRtcSpl_MinMaxW16(vector16, kVectorSize, &min_value, &max_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, min_value);
EXPECT_EQ(12334, max_value);
// Test the cases where maximum values have to be caught
// outside of the unrolled loops in ARM-Neon.
vector16[kVectorSize - 1] = WEBRTC_SPL_WORD16_MAX;
vector32[kVectorSize - 1] = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsElementW16(vector16, kVectorSize));
WebRtcSpl_MinMaxW16(vector16, kVectorSize, &min_value, &max_value);
EXPECT_EQ(-29871, min_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, max_value);
// Test the cases where multiple maximum and minimum values are present.
vector16[1] = WEBRTC_SPL_WORD16_MAX;
vector16[6] = WEBRTC_SPL_WORD16_MIN;
vector16[11] = WEBRTC_SPL_WORD16_MIN;
vector32[1] = WEBRTC_SPL_WORD32_MAX;
vector32[6] = WEBRTC_SPL_WORD32_MIN;
vector32[11] = WEBRTC_SPL_WORD32_MIN;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(1u, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(1u, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MaxAbsElementW16(vector16, kVectorSize));
WebRtcSpl_MinMaxW16(vector16, kVectorSize, &min_value, &max_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, min_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, max_value);
// Test a one-element vector.
int16_t single_element_vector = 0;
EXPECT_EQ(0, WebRtcSpl_MaxAbsValueW16(&single_element_vector, 1));
EXPECT_EQ(0, WebRtcSpl_MaxValueW16(&single_element_vector, 1));
EXPECT_EQ(0, WebRtcSpl_MinValueW16(&single_element_vector, 1));
EXPECT_EQ(0u, WebRtcSpl_MaxAbsIndexW16(&single_element_vector, 1));
EXPECT_EQ(0u, WebRtcSpl_MaxIndexW16(&single_element_vector, 1));
EXPECT_EQ(0u, WebRtcSpl_MinIndexW16(&single_element_vector, 1));
EXPECT_EQ(0, WebRtcSpl_MaxAbsElementW16(&single_element_vector, 1));
WebRtcSpl_MinMaxW16(&single_element_vector, 1, &min_value, &max_value);
EXPECT_EQ(0, min_value);
EXPECT_EQ(0, max_value);
// Test a two-element vector with the values WEBRTC_SPL_WORD16_MIN and
// WEBRTC_SPL_WORD16_MAX.
int16_t two_element_vector[2] = {WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD16_MAX};
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(two_element_vector, 2));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(two_element_vector, 2));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(two_element_vector, 2));
EXPECT_EQ(0u, WebRtcSpl_MaxAbsIndexW16(two_element_vector, 2));
EXPECT_EQ(1u, WebRtcSpl_MaxIndexW16(two_element_vector, 2));
EXPECT_EQ(0u, WebRtcSpl_MinIndexW16(two_element_vector, 2));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MaxAbsElementW16(two_element_vector, 2));
WebRtcSpl_MinMaxW16(two_element_vector, 2, &min_value, &max_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN, min_value);
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX, max_value);
}
TEST(SplTest, VectorOperationsTest) {
const size_t kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t a16[kVectorSize];
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
for (size_t kk = 0; kk < kVectorSize; ++kk) {
a16[kk] = B[kk];
b16[kk] = B[kk];
}
WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] * 3 + 7) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] * 3 + B[kk] * 2 + 2) >> 2, bTmp16[kk]);
}
WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((B[kk] * 3 + B[kk] * 2 + 2) >> 2) + ((b16[kk] * 3 + 7) >> 2),
bTmp16[kk]);
}
WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk] * 13) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk] * 13) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((a16[kk] * 13) >> 2) + ((b16[kk] * 7) >> 2), bTmp16[kk]);
}
WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(B[kk] >> 1, bTmp16[kk]);
}
WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk] * b16[3 - kk]) >> 2, bTmp16[kk]);
}
WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk] * b16[kk]) >> 6, bTmp16[kk]);
}
WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16);
for (size_t kk = 0; kk < kVectorSize - 1; ++kk) {
EXPECT_EQ(32767, bTmp16[kk]);
}
EXPECT_EQ(32749, bTmp16[kVectorSize - 1]);
EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1));
}
TEST(SplTest, EstimatorsTest) {
const size_t kOrder = 2;
const int32_t unstable_filter[] = {4, 12, 133, 1100};
const int32_t stable_filter[] = {1100, 133, 12, 4};
int16_t lpc[kOrder + 2] = {0};
int16_t refl[kOrder + 2] = {0};
int16_t lpc_result[] = {4096, -497, 15, 0};
int16_t refl_result[] = {-3962, 123, 0, 0};
EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(unstable_filter, lpc, refl, kOrder));
EXPECT_EQ(1, WebRtcSpl_LevinsonDurbin(stable_filter, lpc, refl, kOrder));
for (size_t i = 0; i < kOrder + 2; ++i) {
EXPECT_EQ(lpc_result[i], lpc[i]);
EXPECT_EQ(refl_result[i], refl[i]);
}
}
TEST(SplTest, FilterTest) {
const size_t kVectorSize = 4;
const size_t kFilterOrder = 3;
int16_t A[] = {1, 2, 33, 100};
int16_t A5[] = {1, 2, 33, 100, -5};
int16_t B[] = {4, 12, 133, 110};
int16_t data_in[kVectorSize];
int16_t data_out[kVectorSize];
int16_t bTmp16Low[kVectorSize];
int16_t bState[kVectorSize];
int16_t bStateLow[kVectorSize];
WebRtcSpl_ZerosArrayW16(bState, kVectorSize);
WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
data_in[kk] = A[kk];
data_out[kk] = 0;
}
// MA filters.
// Note that the input data has `kFilterOrder` states before the actual
// data (one sample).
WebRtcSpl_FilterMAFastQ12(&data_in[kFilterOrder], data_out, B,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[0]);
// AR filters.
// Note that the output data has `kFilterOrder` states before the actual
// data (one sample).
WebRtcSpl_FilterARFastQ12(data_in, &data_out[kFilterOrder], A,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[kFilterOrder]);
EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5, 5, data_in, kVectorSize, bState,
kVectorSize, bStateLow, kVectorSize,
data_out, bTmp16Low, kVectorSize));
}
TEST(SplTest, RandTest) {
const int kVectorSize = 4;
int16_t BU[] = {3653, 12446, 8525, 30691};
int16_t b16[kVectorSize];
uint32_t bSeed = 100000;
EXPECT_EQ(7086, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed));
EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(BU[kk], b16[kk]);
}
}
TEST(SplTest, DotProductWithScaleTest) {
EXPECT_EQ(605362796, WebRtcSpl_DotProductWithScale(vector16, vector16,
kVector16Size, 2));
}
TEST(SplTest, CrossCorrelationTest) {
// Note the function arguments relation specificed by API.
const size_t kCrossCorrelationDimension = 3;
const int kShift = 2;
const int kStep = 1;
const size_t kSeqDimension = 6;
const int16_t kVector16[kVector16Size] = {
1, 4323, 1963, WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MIN + 5, -3333,
-876, 8483, 142};
int32_t vector32[kCrossCorrelationDimension] = {0};
WebRtcSpl_CrossCorrelation(vector32, vector16, kVector16, kSeqDimension,
kCrossCorrelationDimension, kShift, kStep);
// WebRtcSpl_CrossCorrelationC() and WebRtcSpl_CrossCorrelationNeon()
// are not bit-exact.
const int32_t kExpected[kCrossCorrelationDimension] = {-266947903, -15579555,
-171282001};
const int32_t* expected = kExpected;
#if !defined(MIPS32_LE)
const int32_t kExpectedNeon[kCrossCorrelationDimension] = {
-266947901, -15579553, -171281999};
if (WebRtcSpl_CrossCorrelation != WebRtcSpl_CrossCorrelationC) {
expected = kExpectedNeon;
}
#endif
for (size_t i = 0; i < kCrossCorrelationDimension; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST(SplTest, AutoCorrelationTest) {
int scale = 0;
int32_t vector32[kVector16Size];
const int32_t expected[kVector16Size] = {302681398, 14223410, -121705063,
-85221647, -17104971, 61806945,
6644603, -669329, 43};
EXPECT_EQ(kVector16Size,
WebRtcSpl_AutoCorrelation(vector16, kVector16Size,
kVector16Size - 1, vector32, &scale));
EXPECT_EQ(3, scale);
for (size_t i = 0; i < kVector16Size; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST(SplTest, SignalProcessingTest) {
const size_t kVectorSize = 4;
int A[] = {1, 2, 33, 100};
const int16_t kHanning[4] = {2399, 8192, 13985, 16384};
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
int bScale = 0;
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
// TODO(bjornv): Activate the Reflection Coefficient tests when refactoring.
// WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
// WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(a16[kk], b16[kk]);
//// }
// WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(kHanning[kk], bTmp16[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
EXPECT_EQ(11094, WebRtcSpl_Energy(b16, kVectorSize, &bScale));
EXPECT_EQ(0, bScale);
}
TEST(SplTest, FFTTest) {
int16_t B[] = {1, 2, 33, 100, 2, 3, 34, 101, 3, 4, 35, 102, 4, 5, 36, 103};
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
WebRtcSpl_ComplexBitReverse(B, 3);
for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
}
}
TEST(SplTest, Resample48WithSaturationTest) {
// The test resamples 3*kBlockSize number of samples to 2*kBlockSize number
// of samples.
const size_t kBlockSize = 16;
// Saturated input vector of 48 samples.
const int32_t kVectorSaturated[3 * kBlockSize + 7] = {
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767};
// All values in `out_vector` should be `kRefValue32kHz`.
const int32_t kRefValue32kHz1 = -1077493760;
const int32_t kRefValue32kHz2 = 1077493645;
// After bit shift with saturation, `out_vector_w16` is saturated.
const int16_t kRefValue16kHz1 = -32768;
const int16_t kRefValue16kHz2 = 32767;
// Vector for storing output.
int32_t out_vector[2 * kBlockSize];
int16_t out_vector_w16[2 * kBlockSize];
WebRtcSpl_Resample48khzTo32khz(kVectorSaturated, out_vector, kBlockSize);
WebRtcSpl_VectorBitShiftW32ToW16(out_vector_w16, 2 * kBlockSize, out_vector,
15);
// Comparing output values against references. The values at position
// 12-15 are skipped to account for the filter lag.
for (size_t i = 0; i < 12; ++i) {
EXPECT_EQ(kRefValue32kHz1, out_vector[i]);
EXPECT_EQ(kRefValue16kHz1, out_vector_w16[i]);
}
for (size_t i = 16; i < 2 * kBlockSize; ++i) {
EXPECT_EQ(kRefValue32kHz2, out_vector[i]);
EXPECT_EQ(kRefValue16kHz2, out_vector_w16[i]);
}
}