blob: 7818ff77a410b5ec737fb3d2276c3f649df1ce03 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <numeric>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Computes delay of the adaptive filter.
int EstimateFilterDelay(
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response) {
const auto& H2 = adaptive_filter_frequency_response;
constexpr size_t kUpperBin = kFftLengthBy2 - 5;
RTC_DCHECK_GE(kMaxAdaptiveFilterLength, H2.size());
std::array<int, kMaxAdaptiveFilterLength> delays;
delays.fill(0);
for (size_t k = 1; k < kUpperBin; ++k) {
// Find the maximum of H2[j].
size_t peak = 0;
for (size_t j = 0; j < H2.size(); ++j) {
if (H2[j][k] > H2[peak][k]) {
peak = j;
}
}
++delays[peak];
}
return std::distance(delays.begin(),
std::max_element(delays.begin(), delays.end()));
}
float ComputeGainRampupIncrease(const EchoCanceller3Config& config) {
const auto& c = config.echo_removal_control.gain_rampup;
return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks);
}
} // namespace
int AecState::instance_count_ = 0;
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h),
config_(config),
max_render_(config_.filter.main.length_blocks, 0.f),
reverb_decay_(fabsf(config_.ep_strength.default_len)),
gain_rampup_increase_(ComputeGainRampupIncrease(config_)) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
blocks_since_last_saturation_ = 0;
usable_linear_estimate_ = false;
echo_leakage_detected_ = false;
capture_signal_saturation_ = false;
echo_saturation_ = false;
previous_max_sample_ = 0.f;
std::fill(max_render_.begin(), max_render_.end(), 0.f);
blocks_with_proper_filter_adaptation_ = 0;
capture_block_counter_ = 0;
filter_has_had_time_to_converge_ = false;
render_received_ = false;
blocks_with_active_render_ = 0;
initial_state_ = true;
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.gain_change) {
full_reset();
}
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kBufferReadjustment) {
full_reset();
} else if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kBufferFlush) {
active_render_seen_ = false;
full_reset();
} else if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kDelayReset) {
full_reset();
} else if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNewDetectedDelay) {
full_reset();
} else if (echo_path_variability.gain_change) {
capture_block_counter_ = kNumBlocksPerSecond;
}
}
void AecState::Update(
const rtc::Optional<DelayEstimate>& delay_estimate,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
bool converged_filter,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const std::array<float, kBlockSize>& s,
bool echo_leakage_detected) {
// Store input parameters.
echo_leakage_detected_ = echo_leakage_detected;
// Estimate the filter delay.
filter_delay_ = EstimateFilterDelay(adaptive_filter_frequency_response);
const std::vector<float>& x = render_buffer.Block(-filter_delay_)[0];
// Update counters.
++capture_block_counter_;
const bool active_render_block = DetectActiveRender(x);
blocks_with_active_render_ += active_render_block ? 1 : 0;
blocks_with_proper_filter_adaptation_ +=
active_render_block && !SaturatedCapture() ? 1 : 0;
// Update the limit on the echo suppression after an echo path change to avoid
// an initial echo burst.
UpdateSuppressorGainLimit(render_buffer.GetRenderActivity());
// Update the ERL and ERLE measures.
if (converged_filter && capture_block_counter_ >= 2 * kNumBlocksPerSecond) {
const auto& X2 = render_buffer.Spectrum(filter_delay_);
erle_estimator_.Update(X2, Y2, E2_main);
erl_estimator_.Update(X2, Y2);
}
// Update the echo audibility evaluator.
echo_audibility_.Update(x, s, converged_filter);
// Detect and flag echo saturation.
// TODO(peah): Add the delay in this computation to ensure that the render and
// capture signals are properly aligned.
if (config_.ep_strength.echo_can_saturate) {
echo_saturation_ = DetectEchoSaturation(x);
}
// TODO(peah): Move?
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond;
initial_state_ =
blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond;
// Flag whether the linear filter estimate is usable.
usable_linear_estimate_ =
!echo_saturation_ &&
(converged_filter && filter_has_had_time_to_converge_) &&
capture_block_counter_ >= 1.f * kNumBlocksPerSecond && !TransparentMode();
// After an amount of active render samples for which an echo should have been
// detected in the capture signal if the ERL was not infinite, flag that a
// transparent mode should be entered.
transparent_mode_ =
!converged_filter &&
(blocks_with_active_render_ == 0 ||
blocks_with_proper_filter_adaptation_ >= 5 * kNumBlocksPerSecond);
}
void AecState::UpdateReverb(const std::vector<float>& impulse_response) {
// Echo tail estimation enabled if the below variable is set as negative.
if (config_.ep_strength.default_len > 0.f) {
return;
}
if ((!(filter_delay_ && usable_linear_estimate_)) ||
(filter_delay_ >
static_cast<int>(config_.filter.main.length_blocks) - 4)) {
return;
}
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
// Form the data to match against by squaring the impulse response
// coefficients.
std::array<float, GetTimeDomainLength(kMaxAdaptiveFilterLength)>
matching_data_data;
RTC_DCHECK_LE(GetTimeDomainLength(config_.filter.main.length_blocks),
matching_data_data.size());
rtc::ArrayView<float> matching_data(
matching_data_data.data(),
GetTimeDomainLength(config_.filter.main.length_blocks));
std::transform(impulse_response.begin(), impulse_response.end(),
matching_data.begin(), [](float a) { return a * a; });
if (current_reverb_decay_section_ < config_.filter.main.length_blocks) {
// Update accumulated variables for the current filter section.
const size_t start_index = current_reverb_decay_section_ * kFftLengthBy2;
RTC_DCHECK_GT(matching_data.size(), start_index);
RTC_DCHECK_GE(matching_data.size(), start_index + kFftLengthBy2);
float section_energy =
std::accumulate(matching_data.begin() + start_index,
matching_data.begin() + start_index + kFftLengthBy2,
0.f) *
kOneByFftLengthBy2;
section_energy = std::max(
section_energy, 1e-32f); // Regularization to avoid division by 0.
RTC_DCHECK_LT(current_reverb_decay_section_, block_energies_.size());
const float energy_ratio =
block_energies_[current_reverb_decay_section_] / section_energy;
main_filter_is_adapting_ = main_filter_is_adapting_ ||
(energy_ratio > 1.1f || energy_ratio < 0.9f);
// Count consecutive number of "good" filter sections, where "good" means:
// 1) energy is above noise floor.
// 2) energy of current section has not changed too much from last check.
if (!found_end_of_reverb_decay_ && section_energy > tail_energy_ &&
!main_filter_is_adapting_) {
++num_reverb_decay_sections_next_;
} else {
found_end_of_reverb_decay_ = true;
}
block_energies_[current_reverb_decay_section_] = section_energy;
if (num_reverb_decay_sections_ > 0) {
// Linear regression of log squared magnitude of impulse response.
for (size_t i = 0; i < kFftLengthBy2; i++) {
auto fast_approx_log2f = [](const float in) {
RTC_DCHECK_GT(in, .0f);
// Read and interpret float as uint32_t and then cast to float.
// This is done to extract the exponent (bits 30 - 23).
// "Right shift" of the exponent is then performed by multiplying
// with the constant (1/2^23). Finally, we subtract a constant to
// remove the bias (https://en.wikipedia.org/wiki/Exponent_bias).
union {
float dummy;
uint32_t a;
} x = {in};
float out = x.a;
out *= 1.1920929e-7f; // 1/2^23
out -= 126.942695f; // Remove bias.
return out;
};
RTC_DCHECK_GT(matching_data.size(), start_index + i);
float z = fast_approx_log2f(matching_data[start_index + i]);
accumulated_nz_ += accumulated_count_ * z;
++accumulated_count_;
}
}
num_reverb_decay_sections_ =
num_reverb_decay_sections_ > 0 ? num_reverb_decay_sections_ - 1 : 0;
++current_reverb_decay_section_;
} else {
constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60.
constexpr float kMinDecay = 0.02f; // ~15 ms max RT60.
// Accumulated variables throughout whole filter.
// Solve for decay rate.
float decay = reverb_decay_;
if (accumulated_nn_ != 0.f) {
const float exp_candidate = -accumulated_nz_ / accumulated_nn_;
decay = powf(2.0f, -exp_candidate * kFftLengthBy2);
decay = std::min(decay, kMaxDecay);
decay = std::max(decay, kMinDecay);
}
// Filter tail energy (assumed to be noise).
constexpr size_t kTailLength = kFftLength;
constexpr float k1ByTailLength = 1.f / kTailLength;
const size_t tail_index =
GetTimeDomainLength(config_.filter.main.length_blocks) - kTailLength;
RTC_DCHECK_GT(matching_data.size(), tail_index);
tail_energy_ = std::accumulate(matching_data.begin() + tail_index,
matching_data.end(), 0.f) *
k1ByTailLength;
// Update length of decay.
num_reverb_decay_sections_ = num_reverb_decay_sections_next_;
num_reverb_decay_sections_next_ = 0;
// Must have enough data (number of sections) in order
// to estimate decay rate.
if (num_reverb_decay_sections_ < 5) {
num_reverb_decay_sections_ = 0;
}
const float N = num_reverb_decay_sections_ * kFftLengthBy2;
accumulated_nz_ = 0.f;
const float k1By12 = 1.f / 12.f;
// Arithmetic sum $2 \sum_{i=0}^{(N-1)/2}i^2$ calculated directly.
accumulated_nn_ = N * (N * N - 1.0f) * k1By12;
accumulated_count_ = -N * 0.5f;
// Linear regression approach assumes symmetric index around 0.
accumulated_count_ += 0.5f;
// Identify the peak index of the impulse response.
const size_t peak_index = std::distance(
matching_data.begin(),
std::max_element(matching_data.begin(), matching_data.end()));
current_reverb_decay_section_ = peak_index * kOneByFftLengthBy2 + 3;
// Make sure we're not out of bounds.
if (current_reverb_decay_section_ + 1 >=
config_.filter.main.length_blocks) {
current_reverb_decay_section_ = config_.filter.main.length_blocks;
}
size_t start_index = current_reverb_decay_section_ * kFftLengthBy2;
float first_section_energy =
std::accumulate(matching_data.begin() + start_index,
matching_data.begin() + start_index + kFftLengthBy2,
0.f) *
kOneByFftLengthBy2;
// To estimate the reverb decay, the energy of the first filter section
// must be substantially larger than the last.
// Also, the first filter section energy must not deviate too much
// from the max peak.
bool main_filter_has_reverb = first_section_energy > 4.f * tail_energy_;
bool main_filter_is_sane = first_section_energy > 2.f * tail_energy_ &&
matching_data[peak_index] < 100.f;
// Not detecting any decay, but tail is over noise - assume max decay.
if (num_reverb_decay_sections_ == 0 && main_filter_is_sane &&
main_filter_has_reverb) {
decay = kMaxDecay;
}
if (!main_filter_is_adapting_ && main_filter_is_sane &&
num_reverb_decay_sections_ > 0) {
decay = std::max(.97f * reverb_decay_, decay);
reverb_decay_ -= .1f * (reverb_decay_ - decay);
}
found_end_of_reverb_decay_ =
!(main_filter_is_sane && main_filter_has_reverb);
main_filter_is_adapting_ = false;
}
data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_);
data_dumper_->DumpRaw("aec3_reverb_tail_energy", tail_energy_);
}
bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const {
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
return x_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
}
// Updates the suppressor gain limit.
void AecState::UpdateSuppressorGainLimit(bool render_activity) {
const auto& rampup_conf = config_.echo_removal_control.gain_rampup;
if (!active_render_seen_ && render_activity) {
active_render_seen_ = true;
realignment_counter_ = rampup_conf.full_gain_blocks;
} else if (realignment_counter_ > 0) {
--realignment_counter_;
}
if (realignment_counter_ <= 0) {
suppressor_gain_limit_ = 1.f;
return;
}
if (realignment_counter_ > rampup_conf.non_zero_gain_blocks) {
suppressor_gain_limit_ = 0.f;
return;
}
if (realignment_counter_ == rampup_conf.non_zero_gain_blocks) {
suppressor_gain_limit_ = rampup_conf.first_non_zero_gain;
return;
}
RTC_DCHECK_LT(0.f, suppressor_gain_limit_);
suppressor_gain_limit_ =
std::min(1.f, suppressor_gain_limit_ * gain_rampup_increase_);
RTC_DCHECK_GE(1.f, suppressor_gain_limit_);
}
bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x) {
RTC_DCHECK_LT(0, x.size());
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
previous_max_sample_ = max_sample;
// Set flag for potential presence of saturated echo
blocks_since_last_saturation_ =
previous_max_sample_ > 200.f && SaturatedCapture()
? 0
: blocks_since_last_saturation_ + 1;
return blocks_since_last_saturation_ < 20;
}
void AecState::EchoAudibility::Update(rtc::ArrayView<const float> x,
const std::array<float, kBlockSize>& s,
bool converged_filter) {
auto result_x = std::minmax_element(x.begin(), x.end());
auto result_s = std::minmax_element(s.begin(), s.end());
const float x_abs = std::max(fabsf(*result_x.first), fabsf(*result_x.second));
const float s_abs = std::max(fabsf(*result_s.first), fabsf(*result_s.second));
if (converged_filter) {
if (x_abs < 20.f) {
++low_farend_counter_;
} else {
low_farend_counter_ = 0;
}
} else {
if (x_abs < 100.f) {
++low_farend_counter_;
} else {
low_farend_counter_ = 0;
}
}
// The echo is deemed as not audible if the echo estimate is on the level of
// the quantization noise in the FFTs and the nearend level is sufficiently
// strong to mask that by ensuring that the playout and AGC gains do not boost
// any residual echo that is below the quantization noise level. Furthermore,
// cases where the render signal is very close to zero are also identified as
// not producing audible echo.
inaudible_echo_ = (max_nearend_ > 500 && s_abs < 30.f) ||
(!converged_filter && x_abs < 500);
inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20;
}
void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView<const float> e) {
const float e_max = *std::max_element(e.begin(), e.end());
const float e_min = *std::min_element(e.begin(), e.end());
const float e_abs = std::max(fabsf(e_max), fabsf(e_min));
if (max_nearend_ < e_abs) {
max_nearend_ = e_abs;
max_nearend_counter_ = 0;
} else {
if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) {
max_nearend_ *= 0.995f;
}
}
}
} // namespace webrtc