| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/aec_state.h" |
| |
| #include <math.h> |
| |
| #include <numeric> |
| #include <vector> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/atomicops.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Computes delay of the adaptive filter. |
| int EstimateFilterDelay( |
| const std::vector<std::array<float, kFftLengthBy2Plus1>>& |
| adaptive_filter_frequency_response) { |
| const auto& H2 = adaptive_filter_frequency_response; |
| constexpr size_t kUpperBin = kFftLengthBy2 - 5; |
| RTC_DCHECK_GE(kMaxAdaptiveFilterLength, H2.size()); |
| std::array<int, kMaxAdaptiveFilterLength> delays; |
| delays.fill(0); |
| for (size_t k = 1; k < kUpperBin; ++k) { |
| // Find the maximum of H2[j]. |
| size_t peak = 0; |
| for (size_t j = 0; j < H2.size(); ++j) { |
| if (H2[j][k] > H2[peak][k]) { |
| peak = j; |
| } |
| } |
| ++delays[peak]; |
| } |
| |
| return std::distance(delays.begin(), |
| std::max_element(delays.begin(), delays.end())); |
| } |
| |
| float ComputeGainRampupIncrease(const EchoCanceller3Config& config) { |
| const auto& c = config.echo_removal_control.gain_rampup; |
| return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks); |
| } |
| |
| } // namespace |
| |
| int AecState::instance_count_ = 0; |
| |
| AecState::AecState(const EchoCanceller3Config& config) |
| : data_dumper_( |
| new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), |
| erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h), |
| config_(config), |
| max_render_(config_.filter.main.length_blocks, 0.f), |
| reverb_decay_(fabsf(config_.ep_strength.default_len)), |
| gain_rampup_increase_(ComputeGainRampupIncrease(config_)) {} |
| |
| AecState::~AecState() = default; |
| |
| void AecState::HandleEchoPathChange( |
| const EchoPathVariability& echo_path_variability) { |
| const auto full_reset = [&]() { |
| blocks_since_last_saturation_ = 0; |
| usable_linear_estimate_ = false; |
| echo_leakage_detected_ = false; |
| capture_signal_saturation_ = false; |
| echo_saturation_ = false; |
| previous_max_sample_ = 0.f; |
| std::fill(max_render_.begin(), max_render_.end(), 0.f); |
| blocks_with_proper_filter_adaptation_ = 0; |
| capture_block_counter_ = 0; |
| filter_has_had_time_to_converge_ = false; |
| render_received_ = false; |
| blocks_with_active_render_ = 0; |
| initial_state_ = true; |
| }; |
| |
| // TODO(peah): Refine the reset scheme according to the type of gain and |
| // delay adjustment. |
| if (echo_path_variability.gain_change) { |
| full_reset(); |
| } |
| |
| if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kBufferReadjustment) { |
| full_reset(); |
| } else if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kBufferFlush) { |
| active_render_seen_ = false; |
| full_reset(); |
| } else if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kDelayReset) { |
| full_reset(); |
| } else if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kNewDetectedDelay) { |
| full_reset(); |
| } else if (echo_path_variability.gain_change) { |
| capture_block_counter_ = kNumBlocksPerSecond; |
| } |
| } |
| |
| void AecState::Update( |
| const rtc::Optional<DelayEstimate>& delay_estimate, |
| const std::vector<std::array<float, kFftLengthBy2Plus1>>& |
| adaptive_filter_frequency_response, |
| const std::vector<float>& adaptive_filter_impulse_response, |
| bool converged_filter, |
| const RenderBuffer& render_buffer, |
| const std::array<float, kFftLengthBy2Plus1>& E2_main, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| const std::array<float, kBlockSize>& s, |
| bool echo_leakage_detected) { |
| // Store input parameters. |
| echo_leakage_detected_ = echo_leakage_detected; |
| |
| // Estimate the filter delay. |
| filter_delay_ = EstimateFilterDelay(adaptive_filter_frequency_response); |
| const std::vector<float>& x = render_buffer.Block(-filter_delay_)[0]; |
| |
| // Update counters. |
| ++capture_block_counter_; |
| const bool active_render_block = DetectActiveRender(x); |
| blocks_with_active_render_ += active_render_block ? 1 : 0; |
| blocks_with_proper_filter_adaptation_ += |
| active_render_block && !SaturatedCapture() ? 1 : 0; |
| |
| // Update the limit on the echo suppression after an echo path change to avoid |
| // an initial echo burst. |
| UpdateSuppressorGainLimit(render_buffer.GetRenderActivity()); |
| |
| // Update the ERL and ERLE measures. |
| if (converged_filter && capture_block_counter_ >= 2 * kNumBlocksPerSecond) { |
| const auto& X2 = render_buffer.Spectrum(filter_delay_); |
| erle_estimator_.Update(X2, Y2, E2_main); |
| erl_estimator_.Update(X2, Y2); |
| } |
| |
| // Update the echo audibility evaluator. |
| echo_audibility_.Update(x, s, converged_filter); |
| |
| // Detect and flag echo saturation. |
| // TODO(peah): Add the delay in this computation to ensure that the render and |
| // capture signals are properly aligned. |
| if (config_.ep_strength.echo_can_saturate) { |
| echo_saturation_ = DetectEchoSaturation(x); |
| } |
| |
| // TODO(peah): Move? |
| filter_has_had_time_to_converge_ = |
| blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond; |
| |
| initial_state_ = |
| blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond; |
| |
| // Flag whether the linear filter estimate is usable. |
| usable_linear_estimate_ = |
| !echo_saturation_ && |
| (converged_filter && filter_has_had_time_to_converge_) && |
| capture_block_counter_ >= 1.f * kNumBlocksPerSecond && !TransparentMode(); |
| |
| // After an amount of active render samples for which an echo should have been |
| // detected in the capture signal if the ERL was not infinite, flag that a |
| // transparent mode should be entered. |
| transparent_mode_ = |
| !converged_filter && |
| (blocks_with_active_render_ == 0 || |
| blocks_with_proper_filter_adaptation_ >= 5 * kNumBlocksPerSecond); |
| } |
| |
| void AecState::UpdateReverb(const std::vector<float>& impulse_response) { |
| // Echo tail estimation enabled if the below variable is set as negative. |
| if (config_.ep_strength.default_len > 0.f) { |
| return; |
| } |
| |
| if ((!(filter_delay_ && usable_linear_estimate_)) || |
| (filter_delay_ > |
| static_cast<int>(config_.filter.main.length_blocks) - 4)) { |
| return; |
| } |
| |
| constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2; |
| |
| // Form the data to match against by squaring the impulse response |
| // coefficients. |
| std::array<float, GetTimeDomainLength(kMaxAdaptiveFilterLength)> |
| matching_data_data; |
| RTC_DCHECK_LE(GetTimeDomainLength(config_.filter.main.length_blocks), |
| matching_data_data.size()); |
| rtc::ArrayView<float> matching_data( |
| matching_data_data.data(), |
| GetTimeDomainLength(config_.filter.main.length_blocks)); |
| std::transform(impulse_response.begin(), impulse_response.end(), |
| matching_data.begin(), [](float a) { return a * a; }); |
| |
| if (current_reverb_decay_section_ < config_.filter.main.length_blocks) { |
| // Update accumulated variables for the current filter section. |
| |
| const size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; |
| |
| RTC_DCHECK_GT(matching_data.size(), start_index); |
| RTC_DCHECK_GE(matching_data.size(), start_index + kFftLengthBy2); |
| float section_energy = |
| std::accumulate(matching_data.begin() + start_index, |
| matching_data.begin() + start_index + kFftLengthBy2, |
| 0.f) * |
| kOneByFftLengthBy2; |
| |
| section_energy = std::max( |
| section_energy, 1e-32f); // Regularization to avoid division by 0. |
| |
| RTC_DCHECK_LT(current_reverb_decay_section_, block_energies_.size()); |
| const float energy_ratio = |
| block_energies_[current_reverb_decay_section_] / section_energy; |
| |
| main_filter_is_adapting_ = main_filter_is_adapting_ || |
| (energy_ratio > 1.1f || energy_ratio < 0.9f); |
| |
| // Count consecutive number of "good" filter sections, where "good" means: |
| // 1) energy is above noise floor. |
| // 2) energy of current section has not changed too much from last check. |
| if (!found_end_of_reverb_decay_ && section_energy > tail_energy_ && |
| !main_filter_is_adapting_) { |
| ++num_reverb_decay_sections_next_; |
| } else { |
| found_end_of_reverb_decay_ = true; |
| } |
| |
| block_energies_[current_reverb_decay_section_] = section_energy; |
| |
| if (num_reverb_decay_sections_ > 0) { |
| // Linear regression of log squared magnitude of impulse response. |
| for (size_t i = 0; i < kFftLengthBy2; i++) { |
| auto fast_approx_log2f = [](const float in) { |
| RTC_DCHECK_GT(in, .0f); |
| // Read and interpret float as uint32_t and then cast to float. |
| // This is done to extract the exponent (bits 30 - 23). |
| // "Right shift" of the exponent is then performed by multiplying |
| // with the constant (1/2^23). Finally, we subtract a constant to |
| // remove the bias (https://en.wikipedia.org/wiki/Exponent_bias). |
| union { |
| float dummy; |
| uint32_t a; |
| } x = {in}; |
| float out = x.a; |
| out *= 1.1920929e-7f; // 1/2^23 |
| out -= 126.942695f; // Remove bias. |
| return out; |
| }; |
| RTC_DCHECK_GT(matching_data.size(), start_index + i); |
| float z = fast_approx_log2f(matching_data[start_index + i]); |
| accumulated_nz_ += accumulated_count_ * z; |
| ++accumulated_count_; |
| } |
| } |
| |
| num_reverb_decay_sections_ = |
| num_reverb_decay_sections_ > 0 ? num_reverb_decay_sections_ - 1 : 0; |
| ++current_reverb_decay_section_; |
| |
| } else { |
| constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60. |
| constexpr float kMinDecay = 0.02f; // ~15 ms max RT60. |
| |
| // Accumulated variables throughout whole filter. |
| |
| // Solve for decay rate. |
| |
| float decay = reverb_decay_; |
| |
| if (accumulated_nn_ != 0.f) { |
| const float exp_candidate = -accumulated_nz_ / accumulated_nn_; |
| decay = powf(2.0f, -exp_candidate * kFftLengthBy2); |
| decay = std::min(decay, kMaxDecay); |
| decay = std::max(decay, kMinDecay); |
| } |
| |
| // Filter tail energy (assumed to be noise). |
| |
| constexpr size_t kTailLength = kFftLength; |
| constexpr float k1ByTailLength = 1.f / kTailLength; |
| const size_t tail_index = |
| GetTimeDomainLength(config_.filter.main.length_blocks) - kTailLength; |
| |
| RTC_DCHECK_GT(matching_data.size(), tail_index); |
| tail_energy_ = std::accumulate(matching_data.begin() + tail_index, |
| matching_data.end(), 0.f) * |
| k1ByTailLength; |
| |
| // Update length of decay. |
| num_reverb_decay_sections_ = num_reverb_decay_sections_next_; |
| num_reverb_decay_sections_next_ = 0; |
| // Must have enough data (number of sections) in order |
| // to estimate decay rate. |
| if (num_reverb_decay_sections_ < 5) { |
| num_reverb_decay_sections_ = 0; |
| } |
| |
| const float N = num_reverb_decay_sections_ * kFftLengthBy2; |
| accumulated_nz_ = 0.f; |
| const float k1By12 = 1.f / 12.f; |
| // Arithmetic sum $2 \sum_{i=0}^{(N-1)/2}i^2$ calculated directly. |
| accumulated_nn_ = N * (N * N - 1.0f) * k1By12; |
| accumulated_count_ = -N * 0.5f; |
| // Linear regression approach assumes symmetric index around 0. |
| accumulated_count_ += 0.5f; |
| |
| // Identify the peak index of the impulse response. |
| const size_t peak_index = std::distance( |
| matching_data.begin(), |
| std::max_element(matching_data.begin(), matching_data.end())); |
| |
| current_reverb_decay_section_ = peak_index * kOneByFftLengthBy2 + 3; |
| // Make sure we're not out of bounds. |
| if (current_reverb_decay_section_ + 1 >= |
| config_.filter.main.length_blocks) { |
| current_reverb_decay_section_ = config_.filter.main.length_blocks; |
| } |
| size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; |
| float first_section_energy = |
| std::accumulate(matching_data.begin() + start_index, |
| matching_data.begin() + start_index + kFftLengthBy2, |
| 0.f) * |
| kOneByFftLengthBy2; |
| |
| // To estimate the reverb decay, the energy of the first filter section |
| // must be substantially larger than the last. |
| // Also, the first filter section energy must not deviate too much |
| // from the max peak. |
| bool main_filter_has_reverb = first_section_energy > 4.f * tail_energy_; |
| bool main_filter_is_sane = first_section_energy > 2.f * tail_energy_ && |
| matching_data[peak_index] < 100.f; |
| |
| // Not detecting any decay, but tail is over noise - assume max decay. |
| if (num_reverb_decay_sections_ == 0 && main_filter_is_sane && |
| main_filter_has_reverb) { |
| decay = kMaxDecay; |
| } |
| |
| if (!main_filter_is_adapting_ && main_filter_is_sane && |
| num_reverb_decay_sections_ > 0) { |
| decay = std::max(.97f * reverb_decay_, decay); |
| reverb_decay_ -= .1f * (reverb_decay_ - decay); |
| } |
| |
| found_end_of_reverb_decay_ = |
| !(main_filter_is_sane && main_filter_has_reverb); |
| main_filter_is_adapting_ = false; |
| } |
| |
| data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_); |
| data_dumper_->DumpRaw("aec3_reverb_tail_energy", tail_energy_); |
| } |
| |
| bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const { |
| const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f); |
| return x_energy > (config_.render_levels.active_render_limit * |
| config_.render_levels.active_render_limit) * |
| kFftLengthBy2; |
| } |
| |
| // Updates the suppressor gain limit. |
| void AecState::UpdateSuppressorGainLimit(bool render_activity) { |
| const auto& rampup_conf = config_.echo_removal_control.gain_rampup; |
| if (!active_render_seen_ && render_activity) { |
| active_render_seen_ = true; |
| realignment_counter_ = rampup_conf.full_gain_blocks; |
| } else if (realignment_counter_ > 0) { |
| --realignment_counter_; |
| } |
| |
| if (realignment_counter_ <= 0) { |
| suppressor_gain_limit_ = 1.f; |
| return; |
| } |
| |
| if (realignment_counter_ > rampup_conf.non_zero_gain_blocks) { |
| suppressor_gain_limit_ = 0.f; |
| return; |
| } |
| |
| if (realignment_counter_ == rampup_conf.non_zero_gain_blocks) { |
| suppressor_gain_limit_ = rampup_conf.first_non_zero_gain; |
| return; |
| } |
| |
| RTC_DCHECK_LT(0.f, suppressor_gain_limit_); |
| suppressor_gain_limit_ = |
| std::min(1.f, suppressor_gain_limit_ * gain_rampup_increase_); |
| RTC_DCHECK_GE(1.f, suppressor_gain_limit_); |
| } |
| |
| bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x) { |
| RTC_DCHECK_LT(0, x.size()); |
| const float max_sample = fabs(*std::max_element( |
| x.begin(), x.end(), [](float a, float b) { return a * a < b * b; })); |
| previous_max_sample_ = max_sample; |
| |
| // Set flag for potential presence of saturated echo |
| blocks_since_last_saturation_ = |
| previous_max_sample_ > 200.f && SaturatedCapture() |
| ? 0 |
| : blocks_since_last_saturation_ + 1; |
| |
| return blocks_since_last_saturation_ < 20; |
| } |
| |
| void AecState::EchoAudibility::Update(rtc::ArrayView<const float> x, |
| const std::array<float, kBlockSize>& s, |
| bool converged_filter) { |
| auto result_x = std::minmax_element(x.begin(), x.end()); |
| auto result_s = std::minmax_element(s.begin(), s.end()); |
| const float x_abs = std::max(fabsf(*result_x.first), fabsf(*result_x.second)); |
| const float s_abs = std::max(fabsf(*result_s.first), fabsf(*result_s.second)); |
| |
| if (converged_filter) { |
| if (x_abs < 20.f) { |
| ++low_farend_counter_; |
| } else { |
| low_farend_counter_ = 0; |
| } |
| } else { |
| if (x_abs < 100.f) { |
| ++low_farend_counter_; |
| } else { |
| low_farend_counter_ = 0; |
| } |
| } |
| |
| // The echo is deemed as not audible if the echo estimate is on the level of |
| // the quantization noise in the FFTs and the nearend level is sufficiently |
| // strong to mask that by ensuring that the playout and AGC gains do not boost |
| // any residual echo that is below the quantization noise level. Furthermore, |
| // cases where the render signal is very close to zero are also identified as |
| // not producing audible echo. |
| inaudible_echo_ = (max_nearend_ > 500 && s_abs < 30.f) || |
| (!converged_filter && x_abs < 500); |
| inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20; |
| } |
| |
| void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView<const float> e) { |
| const float e_max = *std::max_element(e.begin(), e.end()); |
| const float e_min = *std::min_element(e.begin(), e.end()); |
| const float e_abs = std::max(fabsf(e_max), fabsf(e_min)); |
| |
| if (max_nearend_ < e_abs) { |
| max_nearend_ = e_abs; |
| max_nearend_counter_ = 0; |
| } else { |
| if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) { |
| max_nearend_ *= 0.995f; |
| } |
| } |
| } |
| |
| } // namespace webrtc |