blob: 85000eac9da05f0196a0c9192e6d387970a07868 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/ulpfec_generator.h"
#include <memory>
#include <utility>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "rtc_base/basictypes.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kRedForFecHeaderLength = 1;
// This controls the maximum amount of excess overhead (actual - target)
// allowed in order to trigger EncodeFec(), before |params_.max_fec_frames|
// is reached. Overhead here is defined as relative to number of media packets.
constexpr int kMaxExcessOverhead = 50; // Q8.
// This is the minimum number of media packets required (above some protection
// level) in order to trigger EncodeFec(), before |params_.max_fec_frames| is
// reached.
constexpr size_t kMinMediaPackets = 4;
// Threshold on the received FEC protection level, above which we enforce at
// least |kMinMediaPackets| packets for the FEC code. Below this
// threshold |kMinMediaPackets| is set to default value of 1.
//
// The range is between 0 and 255, where 255 corresponds to 100% overhead
// (relative to the number of protected media packets).
constexpr uint8_t kHighProtectionThreshold = 80;
// This threshold is used to adapt the |kMinMediaPackets| threshold, based
// on the average number of packets per frame seen so far. When there are few
// packets per frame (as given by this threshold), at least
// |kMinMediaPackets| + 1 packets are sent to the FEC code.
constexpr float kMinMediaPacketsAdaptationThreshold = 2.0f;
// At construction time, we don't know the SSRC that is used for the generated
// FEC packets, but we still need to give it to the ForwardErrorCorrection ctor
// to be used in the decoding.
// TODO(brandtr): Get rid of this awkwardness by splitting
// ForwardErrorCorrection in two objects -- one encoder and one decoder.
constexpr uint32_t kUnknownSsrc = 0;
} // namespace
RedPacket::RedPacket(size_t length)
: data_(new uint8_t[length]), length_(length), header_length_(0) {}
RedPacket::~RedPacket() = default;
void RedPacket::CreateHeader(const uint8_t* rtp_header,
size_t header_length,
int red_payload_type,
int payload_type) {
RTC_DCHECK_LE(header_length + kRedForFecHeaderLength, length_);
memcpy(data_.get(), rtp_header, header_length);
// Replace payload type.
data_[1] &= 0x80;
data_[1] += red_payload_type;
// Add RED header
// f-bit always 0
data_[header_length] = static_cast<uint8_t>(payload_type);
header_length_ = header_length + kRedForFecHeaderLength;
}
void RedPacket::SetSeqNum(int seq_num) {
RTC_DCHECK_GE(seq_num, 0);
RTC_DCHECK_LT(seq_num, 1 << 16);
ByteWriter<uint16_t>::WriteBigEndian(&data_[2], seq_num);
}
void RedPacket::AssignPayload(const uint8_t* payload, size_t length) {
RTC_DCHECK_LE(header_length_ + length, length_);
memcpy(data_.get() + header_length_, payload, length);
}
void RedPacket::ClearMarkerBit() {
data_[1] &= 0x7F;
}
uint8_t* RedPacket::data() const {
return data_.get();
}
size_t RedPacket::length() const {
return length_;
}
UlpfecGenerator::UlpfecGenerator()
: UlpfecGenerator(ForwardErrorCorrection::CreateUlpfec(kUnknownSsrc)) {}
UlpfecGenerator::UlpfecGenerator(std::unique_ptr<ForwardErrorCorrection> fec)
: fec_(std::move(fec)),
last_media_packet_rtp_header_length_(0),
num_protected_frames_(0),
min_num_media_packets_(1) {
memset(&params_, 0, sizeof(params_));
memset(&new_params_, 0, sizeof(new_params_));
}
UlpfecGenerator::~UlpfecGenerator() = default;
void UlpfecGenerator::SetFecParameters(const FecProtectionParams& params) {
RTC_DCHECK_GE(params.fec_rate, 0);
RTC_DCHECK_LE(params.fec_rate, 255);
// Store the new params and apply them for the next set of FEC packets being
// produced.
new_params_ = params;
if (params.fec_rate > kHighProtectionThreshold) {
min_num_media_packets_ = kMinMediaPackets;
} else {
min_num_media_packets_ = 1;
}
}
int UlpfecGenerator::AddRtpPacketAndGenerateFec(const uint8_t* data_buffer,
size_t payload_length,
size_t rtp_header_length) {
RTC_DCHECK(generated_fec_packets_.empty());
if (media_packets_.empty()) {
params_ = new_params_;
}
bool complete_frame = false;
const bool marker_bit = (data_buffer[1] & kRtpMarkerBitMask) ? true : false;
if (media_packets_.size() < kUlpfecMaxMediaPackets) {
// Our packet masks can only protect up to |kUlpfecMaxMediaPackets| packets.
std::unique_ptr<ForwardErrorCorrection::Packet> packet(
new ForwardErrorCorrection::Packet());
packet->length = payload_length + rtp_header_length;
memcpy(packet->data, data_buffer, packet->length);
media_packets_.push_back(std::move(packet));
// Keep track of the RTP header length, so we can copy the RTP header
// from |packet| to newly generated ULPFEC+RED packets.
RTC_DCHECK_GE(rtp_header_length, kRtpHeaderSize);
last_media_packet_rtp_header_length_ = rtp_header_length;
}
if (marker_bit) {
++num_protected_frames_;
complete_frame = true;
}
// Produce FEC over at most |params_.max_fec_frames| frames, or as soon as:
// (1) the excess overhead (actual overhead - requested/target overhead) is
// less than |kMaxExcessOverhead|, and
// (2) at least |min_num_media_packets_| media packets is reached.
if (complete_frame &&
(num_protected_frames_ == params_.max_fec_frames ||
(ExcessOverheadBelowMax() && MinimumMediaPacketsReached()))) {
// We are not using Unequal Protection feature of the parity erasure code.
constexpr int kNumImportantPackets = 0;
constexpr bool kUseUnequalProtection = false;
int ret = fec_->EncodeFec(media_packets_, params_.fec_rate,
kNumImportantPackets, kUseUnequalProtection,
params_.fec_mask_type, &generated_fec_packets_);
if (generated_fec_packets_.empty()) {
ResetState();
}
return ret;
}
return 0;
}
bool UlpfecGenerator::ExcessOverheadBelowMax() const {
return ((Overhead() - params_.fec_rate) < kMaxExcessOverhead);
}
bool UlpfecGenerator::MinimumMediaPacketsReached() const {
float average_num_packets_per_frame =
static_cast<float>(media_packets_.size()) / num_protected_frames_;
int num_media_packets = static_cast<int>(media_packets_.size());
if (average_num_packets_per_frame < kMinMediaPacketsAdaptationThreshold) {
return num_media_packets >= min_num_media_packets_;
} else {
// For larger rates (more packets/frame), increase the threshold.
// TODO(brandtr): Investigate what impact this adaptation has.
return num_media_packets >= min_num_media_packets_ + 1;
}
}
bool UlpfecGenerator::FecAvailable() const {
return !generated_fec_packets_.empty();
}
size_t UlpfecGenerator::NumAvailableFecPackets() const {
return generated_fec_packets_.size();
}
size_t UlpfecGenerator::MaxPacketOverhead() const {
return fec_->MaxPacketOverhead();
}
std::vector<std::unique_ptr<RedPacket>> UlpfecGenerator::GetUlpfecPacketsAsRed(
int red_payload_type,
int ulpfec_payload_type,
uint16_t first_seq_num) {
std::vector<std::unique_ptr<RedPacket>> red_packets;
red_packets.reserve(generated_fec_packets_.size());
RTC_DCHECK(!media_packets_.empty());
ForwardErrorCorrection::Packet* last_media_packet =
media_packets_.back().get();
uint16_t seq_num = first_seq_num;
for (const auto* fec_packet : generated_fec_packets_) {
// Wrap FEC packet (including FEC headers) in a RED packet. Since the
// FEC packets in |generated_fec_packets_| don't have RTP headers, we
// reuse the header from the last media packet.
RTC_DCHECK_GT(last_media_packet_rtp_header_length_, 0);
std::unique_ptr<RedPacket> red_packet(
new RedPacket(last_media_packet_rtp_header_length_ +
kRedForFecHeaderLength + fec_packet->length));
red_packet->CreateHeader(last_media_packet->data,
last_media_packet_rtp_header_length_,
red_payload_type, ulpfec_payload_type);
red_packet->SetSeqNum(seq_num++);
red_packet->ClearMarkerBit();
red_packet->AssignPayload(fec_packet->data, fec_packet->length);
red_packets.push_back(std::move(red_packet));
}
ResetState();
return red_packets;
}
int UlpfecGenerator::Overhead() const {
RTC_DCHECK(!media_packets_.empty());
int num_fec_packets =
fec_->NumFecPackets(media_packets_.size(), params_.fec_rate);
// Return the overhead in Q8.
return (num_fec_packets << 8) / media_packets_.size();
}
void UlpfecGenerator::ResetState() {
media_packets_.clear();
last_media_packet_rtp_header_length_ = 0;
generated_fec_packets_.clear();
num_protected_frames_ = 0;
}
} // namespace webrtc