| /* | 
 |  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | // Modified from the Chromium original: | 
 | // src/media/base/sinc_resampler_unittest.cc | 
 |  | 
 | // MSVC++ requires this to be set before any other includes to get M_PI. | 
 | #define _USE_MATH_DEFINES | 
 |  | 
 | #include "common_audio/resampler/sinc_resampler.h" | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <tuple> | 
 |  | 
 | #include "common_audio/resampler/sinusoidal_linear_chirp_source.h" | 
 | #include "rtc_base/stringize_macros.h" | 
 | #include "rtc_base/system/arch.h" | 
 | #include "rtc_base/time_utils.h" | 
 | #include "system_wrappers/include/cpu_features_wrapper.h" | 
 | #include "test/gmock.h" | 
 | #include "test/gtest.h" | 
 |  | 
 | using ::testing::_; | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | static const double kSampleRateRatio = 192000.0 / 44100.0; | 
 | static const double kKernelInterpolationFactor = 0.5; | 
 |  | 
 | // Helper class to ensure ChunkedResample() functions properly. | 
 | class MockSource : public SincResamplerCallback { | 
 |  public: | 
 |   MOCK_METHOD(void, Run, (size_t frames, float* destination), (override)); | 
 | }; | 
 |  | 
 | ACTION(ClearBuffer) { | 
 |   memset(arg1, 0, arg0 * sizeof(float)); | 
 | } | 
 |  | 
 | ACTION(FillBuffer) { | 
 |   // Value chosen arbitrarily such that SincResampler resamples it to something | 
 |   // easily representable on all platforms; e.g., using kSampleRateRatio this | 
 |   // becomes 1.81219. | 
 |   memset(arg1, 64, arg0 * sizeof(float)); | 
 | } | 
 |  | 
 | // Test requesting multiples of ChunkSize() frames results in the proper number | 
 | // of callbacks. | 
 | TEST(SincResamplerTest, ChunkedResample) { | 
 |   MockSource mock_source; | 
 |  | 
 |   // Choose a high ratio of input to output samples which will result in quick | 
 |   // exhaustion of SincResampler's internal buffers. | 
 |   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, | 
 |                           &mock_source); | 
 |  | 
 |   static const int kChunks = 2; | 
 |   size_t max_chunk_size = resampler.ChunkSize() * kChunks; | 
 |   std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]); | 
 |  | 
 |   // Verify requesting ChunkSize() frames causes a single callback. | 
 |   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer()); | 
 |   resampler.Resample(resampler.ChunkSize(), resampled_destination.get()); | 
 |  | 
 |   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks. | 
 |   ::testing::Mock::VerifyAndClear(&mock_source); | 
 |   EXPECT_CALL(mock_source, Run(_, _)) | 
 |       .Times(kChunks) | 
 |       .WillRepeatedly(ClearBuffer()); | 
 |   resampler.Resample(max_chunk_size, resampled_destination.get()); | 
 | } | 
 |  | 
 | // Test flush resets the internal state properly. | 
 | TEST(SincResamplerTest, Flush) { | 
 |   MockSource mock_source; | 
 |   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, | 
 |                           &mock_source); | 
 |   std::unique_ptr<float[]> resampled_destination( | 
 |       new float[resampler.ChunkSize()]); | 
 |  | 
 |   // Fill the resampler with junk data. | 
 |   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer()); | 
 |   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); | 
 |   ASSERT_NE(resampled_destination[0], 0); | 
 |  | 
 |   // Flush and request more data, which should all be zeros now. | 
 |   resampler.Flush(); | 
 |   ::testing::Mock::VerifyAndClear(&mock_source); | 
 |   EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer()); | 
 |   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); | 
 |   for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i) | 
 |     ASSERT_FLOAT_EQ(resampled_destination[i], 0); | 
 | } | 
 |  | 
 | // Test flush resets the internal state properly. | 
 | TEST(SincResamplerTest, DISABLED_SetRatioBench) { | 
 |   MockSource mock_source; | 
 |   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, | 
 |                           &mock_source); | 
 |  | 
 |   int64_t start = rtc::TimeNanos(); | 
 |   for (int i = 1; i < 10000; ++i) | 
 |     resampler.SetRatio(1.0 / i); | 
 |   double total_time_c_us = | 
 |       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; | 
 |   printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000); | 
 | } | 
 |  | 
 | // Define platform independent function name for Convolve* tests. | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 | #define CONVOLVE_FUNC Convolve_SSE | 
 | #elif defined(WEBRTC_ARCH_ARM_V7) | 
 | #define CONVOLVE_FUNC Convolve_NEON | 
 | #endif | 
 |  | 
 | // Ensure various optimized Convolve() methods return the same value.  Only run | 
 | // this test if other optimized methods exist, otherwise the default Convolve() | 
 | // will be tested by the parameterized SincResampler tests below. | 
 | #if defined(CONVOLVE_FUNC) | 
 | TEST(SincResamplerTest, Convolve) { | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 |   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2)); | 
 | #elif defined(WEBRTC_ARCH_ARM_V7) | 
 |   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON); | 
 | #endif | 
 |  | 
 |   // Initialize a dummy resampler. | 
 |   MockSource mock_source; | 
 |   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, | 
 |                           &mock_source); | 
 |  | 
 |   // The optimized Convolve methods are slightly more precise than Convolve_C(), | 
 |   // so comparison must be done using an epsilon. | 
 |   static const double kEpsilon = 0.00000005; | 
 |  | 
 |   // Use a kernel from SincResampler as input and kernel data, this has the | 
 |   // benefit of already being properly sized and aligned for Convolve_SSE(). | 
 |   double result = resampler.Convolve_C( | 
 |       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), | 
 |       resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   double result2 = resampler.CONVOLVE_FUNC( | 
 |       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), | 
 |       resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   EXPECT_NEAR(result2, result, kEpsilon); | 
 |  | 
 |   // Test Convolve() w/ unaligned input pointer. | 
 |   result = resampler.Convolve_C( | 
 |       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), | 
 |       resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   result2 = resampler.CONVOLVE_FUNC( | 
 |       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), | 
 |       resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   EXPECT_NEAR(result2, result, kEpsilon); | 
 | } | 
 | #endif | 
 |  | 
 | // Benchmark for the various Convolve() methods.  Make sure to build with | 
 | // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking. | 
 | // Original benchmarks were run with --convolve-iterations=50000000. | 
 | TEST(SincResamplerTest, ConvolveBenchmark) { | 
 |   // Initialize a dummy resampler. | 
 |   MockSource mock_source; | 
 |   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize, | 
 |                           &mock_source); | 
 |  | 
 |   // Retrieve benchmark iterations from command line. | 
 |   // TODO(ajm): Reintroduce this as a command line option. | 
 |   const int kConvolveIterations = 1000000; | 
 |  | 
 |   printf("Benchmarking %d iterations:\n", kConvolveIterations); | 
 |  | 
 |   // Benchmark Convolve_C(). | 
 |   int64_t start = rtc::TimeNanos(); | 
 |   for (int i = 0; i < kConvolveIterations; ++i) { | 
 |     resampler.Convolve_C( | 
 |         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), | 
 |         resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   } | 
 |   double total_time_c_us = | 
 |       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; | 
 |   printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000); | 
 |  | 
 | #if defined(CONVOLVE_FUNC) | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 |   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2)); | 
 | #elif defined(WEBRTC_ARCH_ARM_V7) | 
 |   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON); | 
 | #endif | 
 |  | 
 |   // Benchmark with unaligned input pointer. | 
 |   start = rtc::TimeNanos(); | 
 |   for (int j = 0; j < kConvolveIterations; ++j) { | 
 |     resampler.CONVOLVE_FUNC( | 
 |         resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), | 
 |         resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   } | 
 |   double total_time_optimized_unaligned_us = | 
 |       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; | 
 |   printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx " | 
 |          "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000, | 
 |          total_time_c_us / total_time_optimized_unaligned_us); | 
 |  | 
 |   // Benchmark with aligned input pointer. | 
 |   start = rtc::TimeNanos(); | 
 |   for (int j = 0; j < kConvolveIterations; ++j) { | 
 |     resampler.CONVOLVE_FUNC( | 
 |         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), | 
 |         resampler.kernel_storage_.get(), kKernelInterpolationFactor); | 
 |   } | 
 |   double total_time_optimized_aligned_us = | 
 |       (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec; | 
 |   printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx " | 
 |          "faster than Convolve_C and %.2fx faster than " | 
 |          STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n", | 
 |          total_time_optimized_aligned_us / 1000, | 
 |          total_time_c_us / total_time_optimized_aligned_us, | 
 |          total_time_optimized_unaligned_us / total_time_optimized_aligned_us); | 
 | #endif | 
 | } | 
 |  | 
 | #undef CONVOLVE_FUNC | 
 |  | 
 | typedef std::tuple<int, int, double, double> SincResamplerTestData; | 
 | class SincResamplerTest | 
 |     : public ::testing::TestWithParam<SincResamplerTestData> { | 
 |  public: | 
 |   SincResamplerTest() | 
 |       : input_rate_(std::get<0>(GetParam())), | 
 |         output_rate_(std::get<1>(GetParam())), | 
 |         rms_error_(std::get<2>(GetParam())), | 
 |         low_freq_error_(std::get<3>(GetParam())) {} | 
 |  | 
 |   virtual ~SincResamplerTest() {} | 
 |  | 
 |  protected: | 
 |   int input_rate_; | 
 |   int output_rate_; | 
 |   double rms_error_; | 
 |   double low_freq_error_; | 
 | }; | 
 |  | 
 | // Tests resampling using a given input and output sample rate. | 
 | TEST_P(SincResamplerTest, Resample) { | 
 |   // Make comparisons using one second of data. | 
 |   static const double kTestDurationSecs = 1; | 
 |   const size_t input_samples = | 
 |       static_cast<size_t>(kTestDurationSecs * input_rate_); | 
 |   const size_t output_samples = | 
 |       static_cast<size_t>(kTestDurationSecs * output_rate_); | 
 |  | 
 |   // Nyquist frequency for the input sampling rate. | 
 |   const double input_nyquist_freq = 0.5 * input_rate_; | 
 |  | 
 |   // Source for data to be resampled. | 
 |   SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples, | 
 |                                                input_nyquist_freq, 0); | 
 |  | 
 |   const double io_ratio = input_rate_ / static_cast<double>(output_rate_); | 
 |   SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize, | 
 |                           &resampler_source); | 
 |  | 
 |   // Force an update to the sample rate ratio to ensure dyanmic sample rate | 
 |   // changes are working correctly. | 
 |   std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]); | 
 |   memcpy(kernel.get(), resampler.get_kernel_for_testing(), | 
 |          SincResampler::kKernelStorageSize); | 
 |   resampler.SetRatio(M_PI); | 
 |   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), | 
 |                       SincResampler::kKernelStorageSize)); | 
 |   resampler.SetRatio(io_ratio); | 
 |   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), | 
 |                       SincResampler::kKernelStorageSize)); | 
 |  | 
 |   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to | 
 |   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. | 
 |   std::unique_ptr<float[]> resampled_destination(new float[output_samples]); | 
 |   std::unique_ptr<float[]> pure_destination(new float[output_samples]); | 
 |  | 
 |   // Generate resampled signal. | 
 |   resampler.Resample(output_samples, resampled_destination.get()); | 
 |  | 
 |   // Generate pure signal. | 
 |   SinusoidalLinearChirpSource pure_source(output_rate_, output_samples, | 
 |                                           input_nyquist_freq, 0); | 
 |   pure_source.Run(output_samples, pure_destination.get()); | 
 |  | 
 |   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which | 
 |   // we refer to as low and high. | 
 |   static const double kLowFrequencyNyquistRange = 0.7; | 
 |   static const double kHighFrequencyNyquistRange = 0.9; | 
 |  | 
 |   // Calculate Root-Mean-Square-Error and maximum error for the resampling. | 
 |   double sum_of_squares = 0; | 
 |   double low_freq_max_error = 0; | 
 |   double high_freq_max_error = 0; | 
 |   int minimum_rate = std::min(input_rate_, output_rate_); | 
 |   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; | 
 |   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; | 
 |   for (size_t i = 0; i < output_samples; ++i) { | 
 |     double error = fabs(resampled_destination[i] - pure_destination[i]); | 
 |  | 
 |     if (pure_source.Frequency(i) < low_frequency_range) { | 
 |       if (error > low_freq_max_error) | 
 |         low_freq_max_error = error; | 
 |     } else if (pure_source.Frequency(i) < high_frequency_range) { | 
 |       if (error > high_freq_max_error) | 
 |         high_freq_max_error = error; | 
 |     } | 
 |     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. | 
 |  | 
 |     sum_of_squares += error * error; | 
 |   } | 
 |  | 
 |   double rms_error = sqrt(sum_of_squares / output_samples); | 
 |  | 
 | // Convert each error to dbFS. | 
 | #define DBFS(x) 20 * log10(x) | 
 |   rms_error = DBFS(rms_error); | 
 |   low_freq_max_error = DBFS(low_freq_max_error); | 
 |   high_freq_max_error = DBFS(high_freq_max_error); | 
 |  | 
 |   EXPECT_LE(rms_error, rms_error_); | 
 |   EXPECT_LE(low_freq_max_error, low_freq_error_); | 
 |  | 
 |   // All conversions currently have a high frequency error around -6 dbFS. | 
 |   static const double kHighFrequencyMaxError = -6.02; | 
 |   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError); | 
 | } | 
 |  | 
 | // Almost all conversions have an RMS error of around -14 dbFS. | 
 | static const double kResamplingRMSError = -14.58; | 
 |  | 
 | // Thresholds chosen arbitrarily based on what each resampling reported during | 
 | // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS. | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     SincResamplerTest, | 
 |     SincResamplerTest, | 
 |     ::testing::Values( | 
 |         // To 44.1kHz | 
 |         std::make_tuple(8000, 44100, kResamplingRMSError, -62.73), | 
 |         std::make_tuple(11025, 44100, kResamplingRMSError, -72.19), | 
 |         std::make_tuple(16000, 44100, kResamplingRMSError, -62.54), | 
 |         std::make_tuple(22050, 44100, kResamplingRMSError, -73.53), | 
 |         std::make_tuple(32000, 44100, kResamplingRMSError, -63.32), | 
 |         std::make_tuple(44100, 44100, kResamplingRMSError, -73.53), | 
 |         std::make_tuple(48000, 44100, -15.01, -64.04), | 
 |         std::make_tuple(96000, 44100, -18.49, -25.51), | 
 |         std::make_tuple(192000, 44100, -20.50, -13.31), | 
 |  | 
 |         // To 48kHz | 
 |         std::make_tuple(8000, 48000, kResamplingRMSError, -63.43), | 
 |         std::make_tuple(11025, 48000, kResamplingRMSError, -62.61), | 
 |         std::make_tuple(16000, 48000, kResamplingRMSError, -63.96), | 
 |         std::make_tuple(22050, 48000, kResamplingRMSError, -62.42), | 
 |         std::make_tuple(32000, 48000, kResamplingRMSError, -64.04), | 
 |         std::make_tuple(44100, 48000, kResamplingRMSError, -62.63), | 
 |         std::make_tuple(48000, 48000, kResamplingRMSError, -73.52), | 
 |         std::make_tuple(96000, 48000, -18.40, -28.44), | 
 |         std::make_tuple(192000, 48000, -20.43, -14.11), | 
 |  | 
 |         // To 96kHz | 
 |         std::make_tuple(8000, 96000, kResamplingRMSError, -63.19), | 
 |         std::make_tuple(11025, 96000, kResamplingRMSError, -62.61), | 
 |         std::make_tuple(16000, 96000, kResamplingRMSError, -63.39), | 
 |         std::make_tuple(22050, 96000, kResamplingRMSError, -62.42), | 
 |         std::make_tuple(32000, 96000, kResamplingRMSError, -63.95), | 
 |         std::make_tuple(44100, 96000, kResamplingRMSError, -62.63), | 
 |         std::make_tuple(48000, 96000, kResamplingRMSError, -73.52), | 
 |         std::make_tuple(96000, 96000, kResamplingRMSError, -73.52), | 
 |         std::make_tuple(192000, 96000, kResamplingRMSError, -28.41), | 
 |  | 
 |         // To 192kHz | 
 |         std::make_tuple(8000, 192000, kResamplingRMSError, -63.10), | 
 |         std::make_tuple(11025, 192000, kResamplingRMSError, -62.61), | 
 |         std::make_tuple(16000, 192000, kResamplingRMSError, -63.14), | 
 |         std::make_tuple(22050, 192000, kResamplingRMSError, -62.42), | 
 |         std::make_tuple(32000, 192000, kResamplingRMSError, -63.38), | 
 |         std::make_tuple(44100, 192000, kResamplingRMSError, -62.63), | 
 |         std::make_tuple(48000, 192000, kResamplingRMSError, -73.44), | 
 |         std::make_tuple(96000, 192000, kResamplingRMSError, -73.52), | 
 |         std::make_tuple(192000, 192000, kResamplingRMSError, -73.52))); | 
 |  | 
 | }  // namespace webrtc |