blob: 9436ffc1d963c2de4131e5e5f7b1586fb3819894 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/array_view.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/modules/audio_processing/test/audio_buffer_tools.h"
#include "webrtc/modules/audio_processing/test/bitexactness_tools.h"
namespace webrtc {
namespace {
const int kNumFramesToProcess = 1000;
void ProcessOneFrame(int sample_rate_hz,
AudioBuffer* render_audio_buffer,
AudioBuffer* capture_audio_buffer,
GainControlImpl* gain_controller) {
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
render_audio_buffer->SplitIntoFrequencyBands();
capture_audio_buffer->SplitIntoFrequencyBands();
}
gain_controller->ProcessRenderAudio(render_audio_buffer);
gain_controller->AnalyzeCaptureAudio(capture_audio_buffer);
gain_controller->ProcessCaptureAudio(capture_audio_buffer, false);
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
capture_audio_buffer->MergeFrequencyBands();
}
}
void SetupComponent(int sample_rate_hz,
GainControl::Mode mode,
int target_level_dbfs,
int stream_analog_level,
int compression_gain_db,
bool enable_limiter,
int analog_level_min,
int analog_level_max,
GainControlImpl* gain_controller) {
gain_controller->Initialize(1, sample_rate_hz);
GainControl* gc = static_cast<GainControl*>(gain_controller);
gc->Enable(true);
gc->set_mode(mode);
gc->set_stream_analog_level(stream_analog_level);
gc->set_target_level_dbfs(target_level_dbfs);
gc->set_compression_gain_db(compression_gain_db);
gc->enable_limiter(enable_limiter);
gc->set_analog_level_limits(analog_level_min, analog_level_max);
}
void RunBitExactnessTest(int sample_rate_hz,
size_t num_channels,
GainControl::Mode mode,
int target_level_dbfs,
int stream_analog_level,
int compression_gain_db,
bool enable_limiter,
int analog_level_min,
int analog_level_max,
int achieved_stream_analog_level_reference,
rtc::ArrayView<const float> output_reference) {
rtc::CriticalSection crit_render;
rtc::CriticalSection crit_capture;
GainControlImpl gain_controller(&crit_render, &crit_capture);
SetupComponent(sample_rate_hz, mode, target_level_dbfs, stream_analog_level,
compression_gain_db, enable_limiter, analog_level_min,
analog_level_max, &gain_controller);
const int samples_per_channel = rtc::CheckedDivExact(sample_rate_hz, 100);
const StreamConfig render_config(sample_rate_hz, num_channels, false);
AudioBuffer render_buffer(
render_config.num_frames(), render_config.num_channels(),
render_config.num_frames(), 1, render_config.num_frames());
test::InputAudioFile render_file(
test::GetApmRenderTestVectorFileName(sample_rate_hz));
std::vector<float> render_input(samples_per_channel * num_channels);
const StreamConfig capture_config(sample_rate_hz, num_channels, false);
AudioBuffer capture_buffer(
capture_config.num_frames(), capture_config.num_channels(),
capture_config.num_frames(), 1, capture_config.num_frames());
test::InputAudioFile capture_file(
test::GetApmCaptureTestVectorFileName(sample_rate_hz));
std::vector<float> capture_input(samples_per_channel * num_channels);
for (int frame_no = 0; frame_no < kNumFramesToProcess; ++frame_no) {
ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
&render_file, render_input);
ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
&capture_file, capture_input);
test::CopyVectorToAudioBuffer(render_config, render_input, &render_buffer);
test::CopyVectorToAudioBuffer(capture_config, capture_input,
&capture_buffer);
ProcessOneFrame(sample_rate_hz, &render_buffer, &capture_buffer,
&gain_controller);
}
// Extract and verify the test results.
std::vector<float> capture_output;
test::ExtractVectorFromAudioBuffer(capture_config, &capture_buffer,
&capture_output);
EXPECT_EQ(achieved_stream_analog_level_reference,
gain_controller.stream_analog_level());
// Compare the output with the reference. Only the first values of the output
// from last frame processed are compared in order not having to specify all
// preceeding frames as testvectors. As the algorithm being tested has a
// memory, testing only the last frame implicitly also tests the preceeding
// frames.
const float kTolerance = 1.0f / 32768.0f;
EXPECT_TRUE(test::BitExactFrame(
capture_config.num_frames(), capture_config.num_channels(),
output_reference, capture_output, kTolerance));
}
} // namespace
TEST(GainControlBitExactnessTest,
Mono8kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.004578f, -0.003998f, -0.002991f};
RunBitExactnessTest(8000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.004303f, -0.004150f, -0.004089f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Stereo16kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.010254f, -0.004761f, -0.009918f,
-0.010254f, -0.004761f, -0.009918f};
RunBitExactnessTest(16000, 2, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono32kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.005554f, -0.005066f, -0.004242f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono48kHz_AdaptiveAnalog_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.005554f, -0.005066f, -0.004242f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono8kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.014221f, -0.012421f, -0.009308f};
RunBitExactnessTest(8000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.014923f, -0.014404f, -0.014191f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Stereo16kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.009796f, -0.004547f, -0.009460f,
-0.009796f, -0.004547f, -0.009460f};
RunBitExactnessTest(16000, 2, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono32kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.019287f, -0.017578f, -0.014709f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono48kHz_AdaptiveDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.019287f, -0.017578f, -0.014709f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kAdaptiveDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono8kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.008209f, -0.007172f, -0.005371f};
RunBitExactnessTest(8000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.007721f, -0.007446f, -0.007355f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Stereo16kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.018402f, -0.008545f, -0.017792f,
-0.018402f, -0.008545f, -0.017792f};
RunBitExactnessTest(16000, 2, GainControl::Mode::kFixedDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono32kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.009979f, -0.009064f, -0.007629f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono48kHz_FixedDigital_Tl10_SL50_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 50;
const float kOutputReference[] = {-0.009979f, -0.009064f, -0.007629f};
RunBitExactnessTest(32000, 1, GainControl::Mode::kFixedDigital, 10, 50, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveAnalog_Tl10_SL10_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 12;
const float kOutputReference[] = {-0.004303f, -0.004150f, -0.004089f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 10, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveAnalog_Tl10_SL100_CG5_Lim_AL70_80) {
const int kStreamAnalogLevelReference = 100;
const float kOutputReference[] = {-0.004303f, -0.004150f, -0.004089f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveAnalog, 10, 100, 5,
true, 70, 80, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveDigital_Tl10_SL100_CG5_NoLim_AL0_100) {
const int kStreamAnalogLevelReference = 100;
const float kOutputReference[] = {-0.014923f, -0.014404f, -0.014191f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 100, 5,
false, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveDigital_Tl40_SL100_CG5_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 100;
const float kOutputReference[] = {-0.020721f, -0.019989f, -0.019714f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 40, 100, 5,
true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
TEST(GainControlBitExactnessTest,
Mono16kHz_AdaptiveDigital_Tl10_SL100_CG30_Lim_AL0_100) {
const int kStreamAnalogLevelReference = 100;
const float kOutputReference[] = {-0.020416f, -0.019714f, -0.019409f};
RunBitExactnessTest(16000, 1, GainControl::Mode::kAdaptiveDigital, 10, 100,
30, true, 0, 100, kStreamAnalogLevelReference,
kOutputReference);
}
} // namespace webrtc