| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/dsp_helper.h" |
| |
| #include <assert.h> |
| #include <string.h> // Access to memset. |
| |
| #include <algorithm> // Access to min, max. |
| |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| |
| namespace webrtc { |
| |
| // Table of constants used in method DspHelper::ParabolicFit(). |
| const int16_t DspHelper::kParabolaCoefficients[17][3] = { |
| { 120, 32, 64 }, |
| { 140, 44, 75 }, |
| { 150, 50, 80 }, |
| { 160, 57, 85 }, |
| { 180, 72, 96 }, |
| { 200, 89, 107 }, |
| { 210, 98, 112 }, |
| { 220, 108, 117 }, |
| { 240, 128, 128 }, |
| { 260, 150, 139 }, |
| { 270, 162, 144 }, |
| { 280, 174, 149 }, |
| { 300, 200, 160 }, |
| { 320, 228, 171 }, |
| { 330, 242, 176 }, |
| { 340, 257, 181 }, |
| { 360, 288, 192 } }; |
| |
| // Filter coefficients used when downsampling from the indicated sample rates |
| // (8, 16, 32, 48 kHz) to 4 kHz. Coefficients are in Q12. The corresponding Q0 |
| // values are provided in the comments before each array. |
| |
| // Q0 values: {0.3, 0.4, 0.3}. |
| const int16_t DspHelper::kDownsample8kHzTbl[3] = { 1229, 1638, 1229 }; |
| |
| // Q0 values: {0.15, 0.2, 0.3, 0.2, 0.15}. |
| const int16_t DspHelper::kDownsample16kHzTbl[5] = { 614, 819, 1229, 819, 614 }; |
| |
| // Q0 values: {0.1425, 0.1251, 0.1525, 0.1628, 0.1525, 0.1251, 0.1425}. |
| const int16_t DspHelper::kDownsample32kHzTbl[7] = { |
| 584, 512, 625, 667, 625, 512, 584 }; |
| |
| // Q0 values: {0.2487, 0.0952, 0.1042, 0.1074, 0.1042, 0.0952, 0.2487}. |
| const int16_t DspHelper::kDownsample48kHzTbl[7] = { |
| 1019, 390, 427, 440, 427, 390, 1019 }; |
| |
| int DspHelper::RampSignal(const int16_t* input, |
| size_t length, |
| int factor, |
| int increment, |
| int16_t* output) { |
| int factor_q20 = (factor << 6) + 32; |
| // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14? |
| for (size_t i = 0; i < length; ++i) { |
| output[i] = (factor * input[i] + 8192) >> 14; |
| factor_q20 += increment; |
| factor_q20 = std::max(factor_q20, 0); // Never go negative. |
| factor = std::min(factor_q20 >> 6, 16384); |
| } |
| return factor; |
| } |
| |
| int DspHelper::RampSignal(int16_t* signal, |
| size_t length, |
| int factor, |
| int increment) { |
| return RampSignal(signal, length, factor, increment, signal); |
| } |
| |
| int DspHelper::RampSignal(AudioVector* signal, |
| size_t start_index, |
| size_t length, |
| int factor, |
| int increment) { |
| int factor_q20 = (factor << 6) + 32; |
| // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14? |
| for (size_t i = start_index; i < start_index + length; ++i) { |
| (*signal)[i] = (factor * (*signal)[i] + 8192) >> 14; |
| factor_q20 += increment; |
| factor_q20 = std::max(factor_q20, 0); // Never go negative. |
| factor = std::min(factor_q20 >> 6, 16384); |
| } |
| return factor; |
| } |
| |
| int DspHelper::RampSignal(AudioMultiVector* signal, |
| size_t start_index, |
| size_t length, |
| int factor, |
| int increment) { |
| assert(start_index + length <= signal->Size()); |
| if (start_index + length > signal->Size()) { |
| // Wrong parameters. Do nothing and return the scale factor unaltered. |
| return factor; |
| } |
| int end_factor = 0; |
| // Loop over the channels, starting at the same |factor| each time. |
| for (size_t channel = 0; channel < signal->Channels(); ++channel) { |
| end_factor = |
| RampSignal(&(*signal)[channel], start_index, length, factor, increment); |
| } |
| return end_factor; |
| } |
| |
| void DspHelper::PeakDetection(int16_t* data, size_t data_length, |
| size_t num_peaks, int fs_mult, |
| size_t* peak_index, int16_t* peak_value) { |
| size_t min_index = 0; |
| size_t max_index = 0; |
| |
| for (size_t i = 0; i <= num_peaks - 1; i++) { |
| if (num_peaks == 1) { |
| // Single peak. The parabola fit assumes that an extra point is |
| // available; worst case it gets a zero on the high end of the signal. |
| // TODO(hlundin): This can potentially get much worse. It breaks the |
| // API contract, that the length of |data| is |data_length|. |
| data_length++; |
| } |
| |
| peak_index[i] = WebRtcSpl_MaxIndexW16(data, data_length - 1); |
| |
| if (i != num_peaks - 1) { |
| min_index = (peak_index[i] > 2) ? (peak_index[i] - 2) : 0; |
| max_index = std::min(data_length - 1, peak_index[i] + 2); |
| } |
| |
| if ((peak_index[i] != 0) && (peak_index[i] != (data_length - 2))) { |
| ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i], |
| &peak_value[i]); |
| } else { |
| if (peak_index[i] == data_length - 2) { |
| if (data[peak_index[i]] > data[peak_index[i] + 1]) { |
| ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i], |
| &peak_value[i]); |
| } else if (data[peak_index[i]] <= data[peak_index[i] + 1]) { |
| // Linear approximation. |
| peak_value[i] = (data[peak_index[i]] + data[peak_index[i] + 1]) >> 1; |
| peak_index[i] = (peak_index[i] * 2 + 1) * fs_mult; |
| } |
| } else { |
| peak_value[i] = data[peak_index[i]]; |
| peak_index[i] = peak_index[i] * 2 * fs_mult; |
| } |
| } |
| |
| if (i != num_peaks - 1) { |
| memset(&data[min_index], 0, |
| sizeof(data[0]) * (max_index - min_index + 1)); |
| } |
| } |
| } |
| |
| void DspHelper::ParabolicFit(int16_t* signal_points, int fs_mult, |
| size_t* peak_index, int16_t* peak_value) { |
| uint16_t fit_index[13]; |
| if (fs_mult == 1) { |
| fit_index[0] = 0; |
| fit_index[1] = 8; |
| fit_index[2] = 16; |
| } else if (fs_mult == 2) { |
| fit_index[0] = 0; |
| fit_index[1] = 4; |
| fit_index[2] = 8; |
| fit_index[3] = 12; |
| fit_index[4] = 16; |
| } else if (fs_mult == 4) { |
| fit_index[0] = 0; |
| fit_index[1] = 2; |
| fit_index[2] = 4; |
| fit_index[3] = 6; |
| fit_index[4] = 8; |
| fit_index[5] = 10; |
| fit_index[6] = 12; |
| fit_index[7] = 14; |
| fit_index[8] = 16; |
| } else { |
| fit_index[0] = 0; |
| fit_index[1] = 1; |
| fit_index[2] = 3; |
| fit_index[3] = 4; |
| fit_index[4] = 5; |
| fit_index[5] = 7; |
| fit_index[6] = 8; |
| fit_index[7] = 9; |
| fit_index[8] = 11; |
| fit_index[9] = 12; |
| fit_index[10] = 13; |
| fit_index[11] = 15; |
| fit_index[12] = 16; |
| } |
| |
| // num = -3 * signal_points[0] + 4 * signal_points[1] - signal_points[2]; |
| // den = signal_points[0] - 2 * signal_points[1] + signal_points[2]; |
| int32_t num = (signal_points[0] * -3) + (signal_points[1] * 4) |
| - signal_points[2]; |
| int32_t den = signal_points[0] + (signal_points[1] * -2) + signal_points[2]; |
| int32_t temp = num * 120; |
| int flag = 1; |
| int16_t stp = kParabolaCoefficients[fit_index[fs_mult]][0] |
| - kParabolaCoefficients[fit_index[fs_mult - 1]][0]; |
| int16_t strt = (kParabolaCoefficients[fit_index[fs_mult]][0] |
| + kParabolaCoefficients[fit_index[fs_mult - 1]][0]) / 2; |
| int16_t lmt; |
| if (temp < -den * strt) { |
| lmt = strt - stp; |
| while (flag) { |
| if ((flag == fs_mult) || (temp > -den * lmt)) { |
| *peak_value = (den * kParabolaCoefficients[fit_index[fs_mult - flag]][1] |
| + num * kParabolaCoefficients[fit_index[fs_mult - flag]][2] |
| + signal_points[0] * 256) / 256; |
| *peak_index = *peak_index * 2 * fs_mult - flag; |
| flag = 0; |
| } else { |
| flag++; |
| lmt -= stp; |
| } |
| } |
| } else if (temp > -den * (strt + stp)) { |
| lmt = strt + 2 * stp; |
| while (flag) { |
| if ((flag == fs_mult) || (temp < -den * lmt)) { |
| int32_t temp_term_1 = |
| den * kParabolaCoefficients[fit_index[fs_mult+flag]][1]; |
| int32_t temp_term_2 = |
| num * kParabolaCoefficients[fit_index[fs_mult+flag]][2]; |
| int32_t temp_term_3 = signal_points[0] * 256; |
| *peak_value = (temp_term_1 + temp_term_2 + temp_term_3) / 256; |
| *peak_index = *peak_index * 2 * fs_mult + flag; |
| flag = 0; |
| } else { |
| flag++; |
| lmt += stp; |
| } |
| } |
| } else { |
| *peak_value = signal_points[1]; |
| *peak_index = *peak_index * 2 * fs_mult; |
| } |
| } |
| |
| size_t DspHelper::MinDistortion(const int16_t* signal, size_t min_lag, |
| size_t max_lag, size_t length, |
| int32_t* distortion_value) { |
| size_t best_index = 0; |
| int32_t min_distortion = WEBRTC_SPL_WORD32_MAX; |
| for (size_t i = min_lag; i <= max_lag; i++) { |
| int32_t sum_diff = 0; |
| const int16_t* data1 = signal; |
| const int16_t* data2 = signal - i; |
| for (size_t j = 0; j < length; j++) { |
| sum_diff += WEBRTC_SPL_ABS_W32(data1[j] - data2[j]); |
| } |
| // Compare with previous minimum. |
| if (sum_diff < min_distortion) { |
| min_distortion = sum_diff; |
| best_index = i; |
| } |
| } |
| *distortion_value = min_distortion; |
| return best_index; |
| } |
| |
| void DspHelper::CrossFade(const int16_t* input1, const int16_t* input2, |
| size_t length, int16_t* mix_factor, |
| int16_t factor_decrement, int16_t* output) { |
| int16_t factor = *mix_factor; |
| int16_t complement_factor = 16384 - factor; |
| for (size_t i = 0; i < length; i++) { |
| output[i] = |
| (factor * input1[i] + complement_factor * input2[i] + 8192) >> 14; |
| factor -= factor_decrement; |
| complement_factor += factor_decrement; |
| } |
| *mix_factor = factor; |
| } |
| |
| void DspHelper::UnmuteSignal(const int16_t* input, size_t length, |
| int16_t* factor, int increment, |
| int16_t* output) { |
| uint16_t factor_16b = *factor; |
| int32_t factor_32b = (static_cast<int32_t>(factor_16b) << 6) + 32; |
| for (size_t i = 0; i < length; i++) { |
| output[i] = (factor_16b * input[i] + 8192) >> 14; |
| factor_32b = std::max(factor_32b + increment, 0); |
| factor_16b = std::min(16384, factor_32b >> 6); |
| } |
| *factor = factor_16b; |
| } |
| |
| void DspHelper::MuteSignal(int16_t* signal, int mute_slope, size_t length) { |
| int32_t factor = (16384 << 6) + 32; |
| for (size_t i = 0; i < length; i++) { |
| signal[i] = ((factor >> 6) * signal[i] + 8192) >> 14; |
| factor -= mute_slope; |
| } |
| } |
| |
| int DspHelper::DownsampleTo4kHz(const int16_t* input, size_t input_length, |
| size_t output_length, int input_rate_hz, |
| bool compensate_delay, int16_t* output) { |
| // Set filter parameters depending on input frequency. |
| // NOTE: The phase delay values are wrong compared to the true phase delay |
| // of the filters. However, the error is preserved (through the +1 term) for |
| // consistency. |
| const int16_t* filter_coefficients; // Filter coefficients. |
| size_t filter_length; // Number of coefficients. |
| size_t filter_delay; // Phase delay in samples. |
| int16_t factor; // Conversion rate (inFsHz / 8000). |
| switch (input_rate_hz) { |
| case 8000: { |
| filter_length = 3; |
| factor = 2; |
| filter_coefficients = kDownsample8kHzTbl; |
| filter_delay = 1 + 1; |
| break; |
| } |
| case 16000: { |
| filter_length = 5; |
| factor = 4; |
| filter_coefficients = kDownsample16kHzTbl; |
| filter_delay = 2 + 1; |
| break; |
| } |
| case 32000: { |
| filter_length = 7; |
| factor = 8; |
| filter_coefficients = kDownsample32kHzTbl; |
| filter_delay = 3 + 1; |
| break; |
| } |
| case 48000: { |
| filter_length = 7; |
| factor = 12; |
| filter_coefficients = kDownsample48kHzTbl; |
| filter_delay = 3 + 1; |
| break; |
| } |
| default: { |
| assert(false); |
| return -1; |
| } |
| } |
| |
| if (!compensate_delay) { |
| // Disregard delay compensation. |
| filter_delay = 0; |
| } |
| |
| // Returns -1 if input signal is too short; 0 otherwise. |
| return WebRtcSpl_DownsampleFast( |
| &input[filter_length - 1], input_length - filter_length + 1, output, |
| output_length, filter_coefficients, filter_length, factor, filter_delay); |
| } |
| |
| } // namespace webrtc |