| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/residual_echo_estimator.h" |
| |
| #include <numeric> |
| #include <vector> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Estimates the echo generating signal power as gated maximal power over a time |
| // window. |
| void EchoGeneratingPower(const RenderBuffer& render_buffer, |
| size_t min_delay, |
| size_t max_delay, |
| std::array<float, kFftLengthBy2Plus1>* X2) { |
| X2->fill(0.f); |
| for (size_t k = min_delay; k <= max_delay; ++k) { |
| std::transform(X2->begin(), X2->end(), render_buffer.Spectrum(k).begin(), |
| X2->begin(), |
| [](float a, float b) { return std::max(a, b); }); |
| } |
| |
| // Apply soft noise gate of -78 dBFS. |
| static constexpr float kNoiseGatePower = 27509.42f; |
| std::for_each(X2->begin(), X2->end(), [](float& a) { |
| if (kNoiseGatePower > a) { |
| a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a)); |
| } |
| }); |
| } |
| |
| constexpr int kNoiseFloorCounterMax = 50; |
| constexpr float kNoiseFloorMin = 10.f * 10.f * 128.f * 128.f; |
| |
| // Updates estimate for the power of the stationary noise component in the |
| // render signal. |
| void RenderNoisePower( |
| const RenderBuffer& render_buffer, |
| std::array<float, kFftLengthBy2Plus1>* X2_noise_floor, |
| std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) { |
| RTC_DCHECK(X2_noise_floor); |
| RTC_DCHECK(X2_noise_floor_counter); |
| |
| const auto render_power = render_buffer.Spectrum(0); |
| RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size()); |
| RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size()); |
| |
| // Estimate the stationary noise power in a minimum statistics manner. |
| for (size_t k = 0; k < render_power.size(); ++k) { |
| // Decrease rapidly. |
| if (render_power[k] < (*X2_noise_floor)[k]) { |
| (*X2_noise_floor)[k] = render_power[k]; |
| (*X2_noise_floor_counter)[k] = 0; |
| } else { |
| // Increase in a delayed, leaky manner. |
| if ((*X2_noise_floor_counter)[k] >= kNoiseFloorCounterMax) { |
| (*X2_noise_floor)[k] = |
| std::max((*X2_noise_floor)[k] * 1.1f, kNoiseFloorMin); |
| } else { |
| ++(*X2_noise_floor_counter)[k]; |
| } |
| } |
| } |
| } |
| |
| } // namespace |
| |
| ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config) |
| : config_(config), S2_old_(config_.filter.main.length_blocks) { |
| Reset(); |
| } |
| |
| ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| |
| void ResidualEchoEstimator::Estimate( |
| const AecState& aec_state, |
| const RenderBuffer& render_buffer, |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| RTC_DCHECK(R2); |
| |
| // Estimate the power of the stationary noise in the render signal. |
| RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_); |
| |
| // Estimate the residual echo power. |
| if (aec_state.UsableLinearEstimate()) { |
| LinearEstimate(S2_linear, aec_state.Erle(), aec_state.FilterDelay(), R2); |
| AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), aec_state.FilterDelay(), |
| aec_state.ReverbDecay(), R2); |
| |
| // If the echo is saturated, estimate the echo power as the maximum echo |
| // power with a leakage factor. |
| if (aec_state.SaturatedEcho()) { |
| R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f); |
| } |
| } else { |
| // Estimate the echo generating signal power. |
| std::array<float, kFftLengthBy2Plus1> X2; |
| |
| // Computes the spectral power over the blocks surrounding the delay. |
| EchoGeneratingPower(render_buffer, std::max(0, aec_state.FilterDelay() - 1), |
| aec_state.FilterDelay() + 10, &X2); |
| |
| // Subtract the stationary noise power to avoid stationary noise causing |
| // excessive echo suppression. |
| std::transform( |
| X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(), |
| [](float a, float b) { return std::max(0.f, a - 10.f * b); }); |
| |
| NonLinearEstimate(aec_state.FilterHasHadTimeToConverge(), |
| aec_state.SaturatedEcho(), |
| config_.ep_strength.bounded_erl, |
| aec_state.TransparentMode(), X2, Y2, R2); |
| |
| if (aec_state.SaturatedEcho()) { |
| // TODO(peah): Modify to make sense theoretically. |
| AddEchoReverb(*R2, aec_state.SaturatedEcho(), |
| config_.filter.main.length_blocks, aec_state.ReverbDecay(), |
| R2); |
| } |
| } |
| |
| // If the echo is deemed inaudible, set the residual echo to zero. |
| if (aec_state.InaudibleEcho()) { |
| R2->fill(0.f); |
| R2_old_.fill(0.f); |
| R2_hold_counter_.fill(0.f); |
| } |
| |
| std::copy(R2->begin(), R2->end(), R2_old_.begin()); |
| } |
| |
| void ResidualEchoEstimator::Reset() { |
| X2_noise_floor_counter_.fill(kNoiseFloorCounterMax); |
| X2_noise_floor_.fill(kNoiseFloorMin); |
| R2_reverb_.fill(0.f); |
| R2_old_.fill(0.f); |
| R2_hold_counter_.fill(0.f); |
| for (auto& S2_k : S2_old_) { |
| S2_k.fill(0.f); |
| } |
| } |
| |
| void ResidualEchoEstimator::LinearEstimate( |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& erle, |
| size_t delay, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f); |
| std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(), |
| [](float a, float b) { |
| RTC_DCHECK_LT(0.f, a); |
| return b / a; |
| }); |
| } |
| |
| void ResidualEchoEstimator::NonLinearEstimate( |
| bool sufficient_filter_updates, |
| bool saturated_echo, |
| bool bounded_erl, |
| bool transparent_mode, |
| const std::array<float, kFftLengthBy2Plus1>& X2, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| float echo_path_gain_lf; |
| float echo_path_gain_mf; |
| float echo_path_gain_hf; |
| |
| // Set echo path gains. |
| if (saturated_echo) { |
| // If the echo could be saturated, use a very conservative gain. |
| echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 10000.f; |
| } else if (sufficient_filter_updates && !bounded_erl) { |
| // If the filter should have been able to converge, and no assumption is |
| // possible on the ERL, use a low gain. |
| echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.01f; |
| } else if ((sufficient_filter_updates && bounded_erl) || transparent_mode) { |
| // If the filter should have been able to converge, and and it is known that |
| // the ERL is bounded, use a very low gain. |
| echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.001f; |
| } else { |
| // In the initial state, use conservative gains. |
| echo_path_gain_lf = config_.ep_strength.lf; |
| echo_path_gain_mf = config_.ep_strength.mf; |
| echo_path_gain_hf = config_.ep_strength.hf; |
| } |
| |
| // Compute preliminary residual echo. |
| std::transform( |
| X2.begin(), X2.begin() + 12, R2->begin(), |
| [echo_path_gain_lf](float a) { return a * echo_path_gain_lf; }); |
| std::transform( |
| X2.begin() + 12, X2.begin() + 25, R2->begin() + 12, |
| [echo_path_gain_mf](float a) { return a * echo_path_gain_mf; }); |
| std::transform( |
| X2.begin() + 25, X2.end(), R2->begin() + 25, |
| [echo_path_gain_hf](float a) { return a * echo_path_gain_hf; }); |
| |
| for (size_t k = 0; k < R2->size(); ++k) { |
| // Update hold counter. |
| R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1; |
| |
| // Compute the residual echo by holding a maximum echo powers and an echo |
| // fading corresponding to a room with an RT60 value of about 50 ms. |
| (*R2)[k] = R2_hold_counter_[k] < 2 |
| ? std::max((*R2)[k], R2_old_[k]) |
| : std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]); |
| } |
| } |
| |
| void ResidualEchoEstimator::AddEchoReverb( |
| const std::array<float, kFftLengthBy2Plus1>& S2, |
| bool saturated_echo, |
| size_t delay, |
| float reverb_decay_factor, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| // Compute the decay factor for how much the echo has decayed before leaving |
| // the region covered by the linear model. |
| auto integer_power = [](float base, int exp) { |
| float result = 1.f; |
| for (int k = 0; k < exp; ++k) { |
| result *= base; |
| } |
| return result; |
| }; |
| RTC_DCHECK_LE(delay, S2_old_.size()); |
| const float reverb_decay_for_delay = |
| integer_power(reverb_decay_factor, S2_old_.size() - delay); |
| |
| // Update the estimate of the reverberant residual echo power. |
| S2_old_index_ = S2_old_index_ > 0 ? S2_old_index_ - 1 : S2_old_.size() - 1; |
| const auto& S2_end = S2_old_[S2_old_index_]; |
| std::transform( |
| S2_end.begin(), S2_end.end(), R2_reverb_.begin(), R2_reverb_.begin(), |
| [reverb_decay_for_delay, reverb_decay_factor](float a, float b) { |
| return (b + a * reverb_decay_for_delay) * reverb_decay_factor; |
| }); |
| |
| // Update the buffer of old echo powers. |
| if (saturated_echo) { |
| S2_old_[S2_old_index_].fill((*std::max_element(S2.begin(), S2.end())) * |
| 100.f); |
| } else { |
| std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin()); |
| } |
| |
| // Add the power of the echo reverb to the residual echo power. |
| std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(), |
| std::plus<float>()); |
| } |
| |
| } // namespace webrtc |