| /* |
| * Copyright 2012 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Bind() is an overloaded function that converts method calls into function |
| // objects (aka functors). The method object is captured as a scoped_refptr<> if |
| // possible, and as a raw pointer otherwise. Any arguments to the method are |
| // captured by value. The return value of Bind is a stateful, nullary function |
| // object. Care should be taken about the lifetime of objects captured by |
| // Bind(); the returned functor knows nothing about the lifetime of a non |
| // ref-counted method object or any arguments passed by pointer, and calling the |
| // functor with a destroyed object will surely do bad things. |
| // |
| // To prevent the method object from being captured as a scoped_refptr<>, you |
| // can use Unretained. But this should only be done when absolutely necessary, |
| // and when the caller knows the extra reference isn't needed. |
| // |
| // Example usage: |
| // struct Foo { |
| // int Test1() { return 42; } |
| // int Test2() const { return 52; } |
| // int Test3(int x) { return x*x; } |
| // float Test4(int x, float y) { return x + y; } |
| // }; |
| // |
| // int main() { |
| // Foo foo; |
| // cout << rtc::Bind(&Foo::Test1, &foo)() << endl; |
| // cout << rtc::Bind(&Foo::Test2, &foo)() << endl; |
| // cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl; |
| // cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl; |
| // } |
| // |
| // Example usage of ref counted objects: |
| // struct Bar { |
| // int AddRef(); |
| // int Release(); |
| // |
| // void Test() {} |
| // void BindThis() { |
| // // The functor passed to AsyncInvoke() will keep this object alive. |
| // invoker.AsyncInvoke(RTC_FROM_HERE,rtc::Bind(&Bar::Test, this)); |
| // } |
| // }; |
| // |
| // int main() { |
| // rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>(); |
| // auto functor = rtc::Bind(&Bar::Test, bar); |
| // bar = nullptr; |
| // // The functor stores an internal scoped_refptr<Bar>, so this is safe. |
| // functor(); |
| // } |
| // |
| |
| #ifndef RTC_BASE_BIND_H_ |
| #define RTC_BASE_BIND_H_ |
| |
| #include <tuple> |
| #include <type_traits> |
| |
| #include "api/scoped_refptr.h" |
| #include "rtc_base/template_util.h" |
| |
| #define NONAME |
| |
| namespace rtc { |
| namespace detail { |
| // This is needed because the template parameters in Bind can't be resolved |
| // if they're used both as parameters of the function pointer type and as |
| // parameters to Bind itself: the function pointer parameters are exact |
| // matches to the function prototype, but the parameters to bind have |
| // references stripped. This trick allows the compiler to dictate the Bind |
| // parameter types rather than deduce them. |
| template <class T> |
| struct identity { |
| typedef T type; |
| }; |
| |
| // IsRefCounted<T>::value will be true for types that can be used in |
| // rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef() |
| // and Release(), regardless of their return types. AddRef() and Release() can |
| // be defined in T or any superclass of T. |
| template <typename T> |
| class IsRefCounted { |
| // This is a complex implementation detail done with SFINAE. |
| |
| // Define types such that sizeof(Yes) != sizeof(No). |
| struct Yes { |
| char dummy[1]; |
| }; |
| struct No { |
| char dummy[2]; |
| }; |
| // Define two overloaded template functions with return types of different |
| // size. This way, we can use sizeof() on the return type to determine which |
| // function the compiler would have chosen. One function will be preferred |
| // over the other if it is possible to create it without compiler errors, |
| // otherwise the compiler will simply remove it, and default to the less |
| // preferred function. |
| template <typename R> |
| static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42)); |
| template <typename C> |
| static No test(...); |
| |
| public: |
| // Trick the compiler to tell if it's possible to call AddRef() and Release(). |
| static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes); |
| }; |
| |
| // TernaryTypeOperator is a helper class to select a type based on a static bool |
| // value. |
| template <bool condition, typename IfTrueT, typename IfFalseT> |
| struct TernaryTypeOperator {}; |
| |
| template <typename IfTrueT, typename IfFalseT> |
| struct TernaryTypeOperator<true, IfTrueT, IfFalseT> { |
| typedef IfTrueT type; |
| }; |
| |
| template <typename IfTrueT, typename IfFalseT> |
| struct TernaryTypeOperator<false, IfTrueT, IfFalseT> { |
| typedef IfFalseT type; |
| }; |
| |
| // PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T* |
| // otherwise. |
| template <class T> |
| struct PointerType { |
| typedef typename TernaryTypeOperator<IsRefCounted<T>::value, |
| scoped_refptr<T>, |
| T*>::type type; |
| }; |
| |
| template <typename T> |
| class UnretainedWrapper { |
| public: |
| explicit UnretainedWrapper(T* o) : ptr_(o) {} |
| T* get() const { return ptr_; } |
| |
| private: |
| T* ptr_; |
| }; |
| |
| } // namespace detail |
| |
| template <typename T> |
| static inline detail::UnretainedWrapper<T> Unretained(T* o) { |
| return detail::UnretainedWrapper<T>(o); |
| } |
| |
| template <class ObjectT, class MethodT, class R, typename... Args> |
| class MethodFunctor { |
| public: |
| MethodFunctor(MethodT method, ObjectT* object, Args... args) |
| : method_(method), object_(object), args_(args...) {} |
| R operator()() const { |
| return CallMethod(typename sequence_generator<sizeof...(Args)>::type()); |
| } |
| |
| private: |
| // Use sequence_generator (see template_util.h) to expand a MethodFunctor |
| // with 2 arguments to (std::get<0>(args_), std::get<1>(args_)), for |
| // instance. |
| template <int... S> |
| R CallMethod(sequence<S...>) const { |
| return (object_->*method_)(std::get<S>(args_)...); |
| } |
| |
| MethodT method_; |
| typename detail::PointerType<ObjectT>::type object_; |
| typename std::tuple<typename std::remove_reference<Args>::type...> args_; |
| }; |
| |
| template <class ObjectT, class MethodT, class R, typename... Args> |
| class UnretainedMethodFunctor { |
| public: |
| UnretainedMethodFunctor(MethodT method, |
| detail::UnretainedWrapper<ObjectT> object, |
| Args... args) |
| : method_(method), object_(object.get()), args_(args...) {} |
| R operator()() const { |
| return CallMethod(typename sequence_generator<sizeof...(Args)>::type()); |
| } |
| |
| private: |
| // Use sequence_generator (see template_util.h) to expand an |
| // UnretainedMethodFunctor with 2 arguments to (std::get<0>(args_), |
| // std::get<1>(args_)), for instance. |
| template <int... S> |
| R CallMethod(sequence<S...>) const { |
| return (object_->*method_)(std::get<S>(args_)...); |
| } |
| |
| MethodT method_; |
| ObjectT* object_; |
| typename std::tuple<typename std::remove_reference<Args>::type...> args_; |
| }; |
| |
| template <class FunctorT, class R, typename... Args> |
| class Functor { |
| public: |
| Functor(const FunctorT& functor, Args... args) |
| : functor_(functor), args_(args...) {} |
| R operator()() const { |
| return CallFunction(typename sequence_generator<sizeof...(Args)>::type()); |
| } |
| |
| private: |
| // Use sequence_generator (see template_util.h) to expand a Functor |
| // with 2 arguments to (std::get<0>(args_), std::get<1>(args_)), for |
| // instance. |
| template <int... S> |
| R CallFunction(sequence<S...>) const { |
| return functor_(std::get<S>(args_)...); |
| } |
| |
| FunctorT functor_; |
| typename std::tuple<typename std::remove_reference<Args>::type...> args_; |
| }; |
| |
| #define FP_T(x) R (ObjectT::*x)(Args...) |
| |
| template <class ObjectT, class R, typename... Args> |
| MethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind( |
| FP_T(method), |
| ObjectT* object, |
| typename detail::identity<Args>::type... args) { |
| return MethodFunctor<ObjectT, FP_T(NONAME), R, Args...>(method, object, |
| args...); |
| } |
| |
| template <class ObjectT, class R, typename... Args> |
| MethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind( |
| FP_T(method), |
| const scoped_refptr<ObjectT>& object, |
| typename detail::identity<Args>::type... args) { |
| return MethodFunctor<ObjectT, FP_T(NONAME), R, Args...>(method, object.get(), |
| args...); |
| } |
| |
| template <class ObjectT, class R, typename... Args> |
| UnretainedMethodFunctor<ObjectT, FP_T(NONAME), R, Args...> Bind( |
| FP_T(method), |
| detail::UnretainedWrapper<ObjectT> object, |
| typename detail::identity<Args>::type... args) { |
| return UnretainedMethodFunctor<ObjectT, FP_T(NONAME), R, Args...>( |
| method, object, args...); |
| } |
| |
| #undef FP_T |
| #define FP_T(x) R (ObjectT::*x)(Args...) const |
| |
| template <class ObjectT, class R, typename... Args> |
| MethodFunctor<const ObjectT, FP_T(NONAME), R, Args...> Bind( |
| FP_T(method), |
| const ObjectT* object, |
| typename detail::identity<Args>::type... args) { |
| return MethodFunctor<const ObjectT, FP_T(NONAME), R, Args...>(method, object, |
| args...); |
| } |
| template <class ObjectT, class R, typename... Args> |
| UnretainedMethodFunctor<const ObjectT, FP_T(NONAME), R, Args...> Bind( |
| FP_T(method), |
| detail::UnretainedWrapper<const ObjectT> object, |
| typename detail::identity<Args>::type... args) { |
| return UnretainedMethodFunctor<const ObjectT, FP_T(NONAME), R, Args...>( |
| method, object, args...); |
| } |
| |
| #undef FP_T |
| #define FP_T(x) R (*x)(Args...) |
| |
| template <class R, typename... Args> |
| Functor<FP_T(NONAME), R, Args...> Bind( |
| FP_T(function), |
| typename detail::identity<Args>::type... args) { |
| return Functor<FP_T(NONAME), R, Args...>(function, args...); |
| } |
| |
| #undef FP_T |
| |
| } // namespace rtc |
| |
| #undef NONAME |
| |
| #endif // RTC_BASE_BIND_H_ |