| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Unit tests for RedPayloadSplitter class. |
| |
| #include "modules/audio_coding/neteq/red_payload_splitter.h" |
| |
| #include <assert.h> |
| |
| #include <memory> |
| #include <utility> // pair |
| |
| #include "api/audio_codecs/builtin_audio_decoder_factory.h" |
| #include "modules/audio_coding/neteq/mock/mock_decoder_database.h" |
| #include "modules/audio_coding/neteq/packet.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "test/gtest.h" |
| #include "test/mock_audio_decoder_factory.h" |
| |
| using ::testing::Return; |
| using ::testing::ReturnNull; |
| |
| namespace webrtc { |
| |
| static const int kRedPayloadType = 100; |
| static const size_t kPayloadLength = 10; |
| static const size_t kRedHeaderLength = 4; // 4 bytes RED header. |
| static const uint16_t kSequenceNumber = 0; |
| static const uint32_t kBaseTimestamp = 0x12345678; |
| |
| // A possible Opus packet that contains FEC is the following. |
| // The frame is 20 ms in duration. |
| // |
| // 0 1 2 3 |
| // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| // | Compressed frame 1 (N-2 bytes)... : |
| // : | |
| // | | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| void CreateOpusFecPayload(uint8_t* payload, |
| size_t payload_length, |
| uint8_t payload_value) { |
| if (payload_length < 2) { |
| return; |
| } |
| payload[0] = 0x08; |
| payload[1] = 0x40; |
| memset(&payload[2], payload_value, payload_length - 2); |
| } |
| |
| // RED headers (according to RFC 2198): |
| // |
| // 0 1 2 3 |
| // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |F| block PT | timestamp offset | block length | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |
| // Last RED header: |
| // 0 1 2 3 4 5 6 7 |
| // +-+-+-+-+-+-+-+-+ |
| // |0| Block PT | |
| // +-+-+-+-+-+-+-+-+ |
| |
| // Creates a RED packet, with |num_payloads| payloads, with payload types given |
| // by the values in array |payload_types| (which must be of length |
| // |num_payloads|). Each redundant payload is |timestamp_offset| samples |
| // "behind" the the previous payload. |
| Packet CreateRedPayload(size_t num_payloads, |
| uint8_t* payload_types, |
| int timestamp_offset, |
| bool embed_opus_fec = false) { |
| Packet packet; |
| packet.payload_type = kRedPayloadType; |
| packet.timestamp = kBaseTimestamp; |
| packet.sequence_number = kSequenceNumber; |
| packet.payload.SetSize((kPayloadLength + 1) + |
| (num_payloads - 1) * |
| (kPayloadLength + kRedHeaderLength)); |
| uint8_t* payload_ptr = packet.payload.data(); |
| for (size_t i = 0; i < num_payloads; ++i) { |
| // Write the RED headers. |
| if (i == num_payloads - 1) { |
| // Special case for last payload. |
| *payload_ptr = payload_types[i] & 0x7F; // F = 0; |
| ++payload_ptr; |
| break; |
| } |
| *payload_ptr = payload_types[i] & 0x7F; |
| // Not the last block; set F = 1. |
| *payload_ptr |= 0x80; |
| ++payload_ptr; |
| int this_offset = rtc::checked_cast<int>( |
| (num_payloads - i - 1) * timestamp_offset); |
| *payload_ptr = this_offset >> 6; |
| ++payload_ptr; |
| assert(kPayloadLength <= 1023); // Max length described by 10 bits. |
| *payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8); |
| ++payload_ptr; |
| *payload_ptr = kPayloadLength & 0xFF; |
| ++payload_ptr; |
| } |
| for (size_t i = 0; i < num_payloads; ++i) { |
| // Write |i| to all bytes in each payload. |
| if (embed_opus_fec) { |
| CreateOpusFecPayload(payload_ptr, kPayloadLength, |
| static_cast<uint8_t>(i)); |
| } else { |
| memset(payload_ptr, static_cast<int>(i), kPayloadLength); |
| } |
| payload_ptr += kPayloadLength; |
| } |
| return packet; |
| } |
| |
| // Create a packet with all payload bytes set to |payload_value|. |
| Packet CreatePacket(uint8_t payload_type, |
| size_t payload_length, |
| uint8_t payload_value, |
| bool opus_fec = false) { |
| Packet packet; |
| packet.payload_type = payload_type; |
| packet.timestamp = kBaseTimestamp; |
| packet.sequence_number = kSequenceNumber; |
| packet.payload.SetSize(payload_length); |
| if (opus_fec) { |
| CreateOpusFecPayload(packet.payload.data(), packet.payload.size(), |
| payload_value); |
| } else { |
| memset(packet.payload.data(), payload_value, packet.payload.size()); |
| } |
| return packet; |
| } |
| |
| // Checks that |packet| has the attributes given in the remaining parameters. |
| void VerifyPacket(const Packet& packet, |
| size_t payload_length, |
| uint8_t payload_type, |
| uint16_t sequence_number, |
| uint32_t timestamp, |
| uint8_t payload_value, |
| Packet::Priority priority) { |
| EXPECT_EQ(payload_length, packet.payload.size()); |
| EXPECT_EQ(payload_type, packet.payload_type); |
| EXPECT_EQ(sequence_number, packet.sequence_number); |
| EXPECT_EQ(timestamp, packet.timestamp); |
| EXPECT_EQ(priority, packet.priority); |
| ASSERT_FALSE(packet.payload.empty()); |
| for (size_t i = 0; i < packet.payload.size(); ++i) { |
| ASSERT_EQ(payload_value, packet.payload.data()[i]); |
| } |
| } |
| |
| void VerifyPacket(const Packet& packet, |
| size_t payload_length, |
| uint8_t payload_type, |
| uint16_t sequence_number, |
| uint32_t timestamp, |
| uint8_t payload_value, |
| bool primary) { |
| return VerifyPacket(packet, payload_length, payload_type, sequence_number, |
| timestamp, payload_value, |
| Packet::Priority{0, primary ? 0 : 1}); |
| } |
| |
| // Start of test definitions. |
| |
| TEST(RedPayloadSplitter, CreateAndDestroy) { |
| RedPayloadSplitter* splitter = new RedPayloadSplitter; |
| delete splitter; |
| } |
| |
| // Packet A is split into A1 and A2. |
| TEST(RedPayloadSplitter, OnePacketTwoPayloads) { |
| uint8_t payload_types[] = {0, 0}; |
| const int kTimestampOffset = 160; |
| PacketList packet_list; |
| packet_list.push_back(CreateRedPayload(2, payload_types, kTimestampOffset)); |
| RedPayloadSplitter splitter; |
| EXPECT_TRUE(splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(2u, packet_list.size()); |
| // Check first packet. The first in list should always be the primary payload. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1], |
| kSequenceNumber, kBaseTimestamp, 1, true); |
| packet_list.pop_front(); |
| // Check second packet. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber, kBaseTimestamp - kTimestampOffset, 0, false); |
| } |
| |
| // Packets A and B are not split at all. Only the RED header in each packet is |
| // removed. |
| TEST(RedPayloadSplitter, TwoPacketsOnePayload) { |
| uint8_t payload_types[] = {0}; |
| const int kTimestampOffset = 160; |
| // Create first packet, with a single RED payload. |
| PacketList packet_list; |
| packet_list.push_back(CreateRedPayload(1, payload_types, kTimestampOffset)); |
| // Create second packet, with a single RED payload. |
| { |
| Packet packet = CreateRedPayload(1, payload_types, kTimestampOffset); |
| // Manually change timestamp and sequence number of second packet. |
| packet.timestamp += kTimestampOffset; |
| packet.sequence_number++; |
| packet_list.push_back(std::move(packet)); |
| } |
| RedPayloadSplitter splitter; |
| EXPECT_TRUE(splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(2u, packet_list.size()); |
| // Check first packet. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber, kBaseTimestamp, 0, true); |
| packet_list.pop_front(); |
| // Check second packet. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 0, true); |
| } |
| |
| // Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with |
| // attributes as follows: |
| // |
| // A1* A2 A3 B1* B2 B3 |
| // Payload type 0 1 2 0 1 2 |
| // Timestamp b b-o b-2o b+o b b-o |
| // Sequence number 0 0 0 1 1 1 |
| // |
| // b = kBaseTimestamp, o = kTimestampOffset, * = primary. |
| TEST(RedPayloadSplitter, TwoPacketsThreePayloads) { |
| uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one. |
| const int kTimestampOffset = 160; |
| // Create first packet, with 3 RED payloads. |
| PacketList packet_list; |
| packet_list.push_back(CreateRedPayload(3, payload_types, kTimestampOffset)); |
| // Create first packet, with 3 RED payloads. |
| { |
| Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset); |
| // Manually change timestamp and sequence number of second packet. |
| packet.timestamp += kTimestampOffset; |
| packet.sequence_number++; |
| packet_list.push_back(std::move(packet)); |
| } |
| RedPayloadSplitter splitter; |
| EXPECT_TRUE(splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(6u, packet_list.size()); |
| // Check first packet, A1. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2], |
| kSequenceNumber, kBaseTimestamp, 2, {0, 0}); |
| packet_list.pop_front(); |
| // Check second packet, A2. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1], |
| kSequenceNumber, kBaseTimestamp - kTimestampOffset, 1, {0, 1}); |
| packet_list.pop_front(); |
| // Check third packet, A3. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0, |
| {0, 2}); |
| packet_list.pop_front(); |
| // Check fourth packet, B1. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2], |
| kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 2, |
| {0, 0}); |
| packet_list.pop_front(); |
| // Check fifth packet, B2. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1], |
| kSequenceNumber + 1, kBaseTimestamp, 1, {0, 1}); |
| packet_list.pop_front(); |
| // Check sixth packet, B3. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber + 1, kBaseTimestamp - kTimestampOffset, 0, |
| {0, 2}); |
| } |
| |
| // Creates a list with 4 packets with these payload types: |
| // 0 = CNGnb |
| // 1 = PCMu |
| // 2 = DTMF (AVT) |
| // 3 = iLBC |
| // We expect the method CheckRedPayloads to discard the iLBC packet, since it |
| // is a non-CNG, non-DTMF payload of another type than the first speech payload |
| // found in the list (which is PCMu). |
| TEST(RedPayloadSplitter, CheckRedPayloads) { |
| PacketList packet_list; |
| for (uint8_t i = 0; i <= 3; ++i) { |
| // Create packet with payload type |i|, payload length 10 bytes, all 0. |
| packet_list.push_back(CreatePacket(i, 10, 0)); |
| } |
| |
| // Use a real DecoderDatabase object here instead of a mock, since it is |
| // easier to just register the payload types and let the actual implementation |
| // do its job. |
| DecoderDatabase decoder_database( |
| new rtc::RefCountedObject<MockAudioDecoderFactory>); |
| decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb, "cng-nb"); |
| decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu"); |
| decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT, "avt"); |
| decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC, "ilbc"); |
| |
| RedPayloadSplitter splitter; |
| splitter.CheckRedPayloads(&packet_list, decoder_database); |
| |
| ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet. |
| // Verify packets. The loop verifies that payload types 0, 1, and 2 are in the |
| // list. |
| for (int i = 0; i <= 2; ++i) { |
| VerifyPacket(packet_list.front(), 10, i, kSequenceNumber, kBaseTimestamp, 0, |
| true); |
| packet_list.pop_front(); |
| } |
| EXPECT_TRUE(packet_list.empty()); |
| } |
| |
| // Packet A is split into A1, A2 and A3. But the length parameter is off, so |
| // the last payloads should be discarded. |
| TEST(RedPayloadSplitter, WrongPayloadLength) { |
| uint8_t payload_types[] = {0, 0, 0}; |
| const int kTimestampOffset = 160; |
| PacketList packet_list; |
| { |
| Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset); |
| // Manually tamper with the payload length of the packet. |
| // This is one byte too short for the second payload (out of three). |
| // We expect only the first payload to be returned. |
| packet.payload.SetSize(packet.payload.size() - (kPayloadLength + 1)); |
| packet_list.push_back(std::move(packet)); |
| } |
| RedPayloadSplitter splitter; |
| EXPECT_FALSE(splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(1u, packet_list.size()); |
| // Check first packet. |
| VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0], |
| kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0, |
| {0, 2}); |
| packet_list.pop_front(); |
| } |
| |
| } // namespace webrtc |