blob: 7219b0b3ea756dc56c2ac97c9d6d559f374ca9a2 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_delay_controller.h"
#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/block_processor.h"
#include "modules/audio_processing/aec3/decimator_by_4.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
std::string ProduceDebugText(int sample_rate_hz) {
std::ostringstream ss;
ss << "Sample rate: " << sample_rate_hz;
return ss.str();
}
std::string ProduceDebugText(int sample_rate_hz, size_t delay) {
std::ostringstream ss;
ss << ProduceDebugText(sample_rate_hz) << ", Delay: " << delay;
return ss.str();
}
} // namespace
// Verifies the output of GetDelay when there are no AnalyzeRender calls.
TEST(RenderDelayController, NoRenderSignal) {
std::vector<float> block(kBlockSize, 0.f);
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
for (size_t k = 0; k < 100; ++k) {
EXPECT_EQ(kMinEchoPathDelayBlocks,
delay_controller->GetDelay(
delay_buffer->GetDownsampledRenderBuffer(), block));
}
}
}
// Verifies the basic API call sequence.
TEST(RenderDelayController, BasicApiCalls) {
std::vector<float> capture_block(kBlockSize, 0.f);
size_t delay_blocks = 0;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(render_block);
render_delay_buffer->UpdateBuffers();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(), capture_block);
}
EXPECT_FALSE(delay_controller->AlignmentHeadroomSamples());
EXPECT_EQ(kMinEchoPathDelayBlocks, delay_blocks);
}
}
// Verifies that the RenderDelayController is able to align the signals for
// simple timeshifts between the signals.
TEST(RenderDelayController, Alignment) {
Random random_generator(42U);
std::vector<float> capture_block(kBlockSize, 0.f);
size_t delay_blocks = 0;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (size_t delay_samples : {15, 50, 150, 200, 800, 4000}) {
SCOPED_TRACE(ProduceDebugText(rate, delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
DelayBuffer<float> signal_delay_buffer(delay_samples);
for (size_t k = 0; k < (400 + delay_samples / kBlockSize); ++k) {
RandomizeSampleVector(&random_generator, render_block[0]);
signal_delay_buffer.Delay(render_block[0], capture_block);
render_delay_buffer->Insert(render_block);
render_delay_buffer->UpdateBuffers();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(), capture_block);
}
constexpr int kDelayHeadroomBlocks = 1;
size_t expected_delay_blocks =
std::max(0, static_cast<int>(delay_samples / kBlockSize) -
kDelayHeadroomBlocks);
EXPECT_EQ(expected_delay_blocks, delay_blocks);
const rtc::Optional<size_t> headroom_samples =
delay_controller->AlignmentHeadroomSamples();
ASSERT_TRUE(headroom_samples);
EXPECT_NEAR(delay_samples - delay_blocks * kBlockSize, *headroom_samples,
4);
}
}
}
// Verifies that the RenderDelayController is able to properly handle noncausal
// delays.
TEST(RenderDelayController, NonCausalAlignment) {
Random random_generator(42U);
size_t delay_blocks = 0;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
std::vector<std::vector<float>> capture_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (int delay_samples : {-15, -50, -150, -200}) {
SCOPED_TRACE(ProduceDebugText(rate, -delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
DelayBuffer<float> signal_delay_buffer(-delay_samples);
for (int k = 0; k < (400 - delay_samples / static_cast<int>(kBlockSize));
++k) {
RandomizeSampleVector(&random_generator, capture_block[0]);
signal_delay_buffer.Delay(capture_block[0], render_block[0]);
render_delay_buffer->Insert(render_block);
render_delay_buffer->UpdateBuffers();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
capture_block[0]);
}
EXPECT_EQ(0u, delay_blocks);
const rtc::Optional<size_t> headroom_samples =
delay_controller->AlignmentHeadroomSamples();
ASSERT_FALSE(headroom_samples);
}
}
}
// Verifies that the RenderDelayController is able to align the signals for
// simple timeshifts between the signals when there is jitter in the API calls.
TEST(RenderDelayController, AlignmentWithJitter) {
Random random_generator(42U);
std::vector<float> capture_block(kBlockSize, 0.f);
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (size_t delay_samples : {15, 50, 300, 800}) {
size_t delay_blocks = 0;
SCOPED_TRACE(ProduceDebugText(rate, delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
DelayBuffer<float> signal_delay_buffer(delay_samples);
for (size_t j = 0;
j <
(1000 + delay_samples / kBlockSize) / kMaxApiCallsJitterBlocks + 1;
++j) {
std::vector<std::vector<float>> capture_block_buffer;
for (size_t k = 0; k < (kMaxApiCallsJitterBlocks - 1); ++k) {
RandomizeSampleVector(&random_generator, render_block[0]);
signal_delay_buffer.Delay(render_block[0], capture_block);
capture_block_buffer.push_back(capture_block);
render_delay_buffer->Insert(render_block);
}
for (size_t k = 0; k < (kMaxApiCallsJitterBlocks - 1); ++k) {
render_delay_buffer->UpdateBuffers();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
capture_block_buffer[k]);
}
}
constexpr int kDelayHeadroomBlocks = 1;
size_t expected_delay_blocks =
std::max(0, static_cast<int>(delay_samples / kBlockSize) -
kDelayHeadroomBlocks);
if (expected_delay_blocks < 2) {
expected_delay_blocks = 0;
}
EXPECT_EQ(expected_delay_blocks, delay_blocks);
const rtc::Optional<size_t> headroom_samples =
delay_controller->AlignmentHeadroomSamples();
ASSERT_TRUE(headroom_samples);
EXPECT_NEAR(delay_samples - delay_blocks * kBlockSize, *headroom_samples,
4);
}
}
}
// Verifies the initial value for the AlignmentHeadroomSamples.
TEST(RenderDelayController, InitialHeadroom) {
std::vector<float> render_block(kBlockSize, 0.f);
std::vector<float> capture_block(kBlockSize, 0.f);
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
EXPECT_FALSE(delay_controller->AlignmentHeadroomSamples());
}
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies the check for the capture signal block size.
TEST(RenderDelayController, WrongCaptureSize) {
std::vector<float> block(kBlockSize - 1, 0.f);
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
EXPECT_DEATH(
std::unique_ptr<RenderDelayController>(
RenderDelayController::Create(EchoCanceller3Config(), rate))
->GetDelay(render_delay_buffer->GetDownsampledRenderBuffer(),
block),
"");
}
}
// Verifies the check for correct sample rate.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayController, DISABLED_WrongSampleRate) {
for (auto rate : {-1, 0, 8001, 16001}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(NumBandsForRate(rate)));
EXPECT_DEATH(
std::unique_ptr<RenderDelayController>(
RenderDelayController::Create(EchoCanceller3Config(), rate)),
"");
}
}
#endif
} // namespace webrtc