blob: 125e6db81d2b89063178540f1be6d54539083c83 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/media_opt_util.h"
#include <float.h>
#include <limits.h>
#include <math.h>
#include <algorithm>
#include <limits>
#include "modules/include/module_common_types.h"
#include "modules/video_coding/fec_rate_table.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "modules/video_coding/nack_fec_tables.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
// Max value of loss rates in off-line model
static const int kPacketLossMax = 129;
namespace media_optimization {
VCMProtectionParameters::VCMProtectionParameters()
: rtt(0),
lossPr(0.0f),
bitRate(0.0f),
packetsPerFrame(0.0f),
packetsPerFrameKey(0.0f),
frameRate(0.0f),
keyFrameSize(0.0f),
fecRateDelta(0),
fecRateKey(0),
codecWidth(0),
codecHeight(0),
numLayers(1) {}
VCMProtectionMethod::VCMProtectionMethod()
: _effectivePacketLoss(0),
_protectionFactorK(0),
_protectionFactorD(0),
_scaleProtKey(2.0f),
_maxPayloadSize(1460),
_corrFecCost(1.0),
_type(kNone) {}
VCMProtectionMethod::~VCMProtectionMethod() {}
enum VCMProtectionMethodEnum VCMProtectionMethod::Type() const {
return _type;
}
uint8_t VCMProtectionMethod::RequiredPacketLossER() {
return _effectivePacketLoss;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorK() {
return _protectionFactorK;
}
uint8_t VCMProtectionMethod::RequiredProtectionFactorD() {
return _protectionFactorD;
}
bool VCMProtectionMethod::RequiredUepProtectionK() {
return _useUepProtectionK;
}
bool VCMProtectionMethod::RequiredUepProtectionD() {
return _useUepProtectionD;
}
int VCMProtectionMethod::MaxFramesFec() const {
return 1;
}
VCMNackFecMethod::VCMNackFecMethod(int64_t lowRttNackThresholdMs,
int64_t highRttNackThresholdMs)
: VCMFecMethod(),
_lowRttNackMs(lowRttNackThresholdMs),
_highRttNackMs(highRttNackThresholdMs),
_maxFramesFec(1) {
assert(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
assert(highRttNackThresholdMs == -1 ||
lowRttNackThresholdMs <= highRttNackThresholdMs);
assert(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
_type = kNackFec;
}
VCMNackFecMethod::~VCMNackFecMethod() {
//
}
bool VCMNackFecMethod::ProtectionFactor(
const VCMProtectionParameters* parameters) {
// Hybrid Nack FEC has three operational modes:
// 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
// (_protectionFactorD) to zero. -1 means no FEC.
// 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
// -1 means always allow NACK.
// 3. Medium RTT values - Hybrid mode: We will only nack the
// residual following the decoding of the FEC (refer to JB logic). FEC
// delta protection factor will be adjusted based on the RTT.
// Otherwise: we count on FEC; if the RTT is below a threshold, then we
// nack the residual, based on a decision made in the JB.
// Compute the protection factors
VCMFecMethod::ProtectionFactor(parameters);
if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs) {
_protectionFactorD = 0;
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
// When in Hybrid mode (RTT range), adjust FEC rates based on the
// RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
} else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs) {
// TODO(mikhal): Disabling adjustment temporarily.
// uint16_t rttIndex = (uint16_t) parameters->rtt;
float adjustRtt = 1.0f; // (float)VCMNackFecTable[rttIndex] / 100.0f;
// Adjust FEC with NACK on (for delta frame only)
// table depends on RTT relative to rttMax (NACK Threshold)
_protectionFactorD = rtc::saturated_cast<uint8_t>(
adjustRtt * rtc::saturated_cast<float>(_protectionFactorD));
// update FEC rates after applying adjustment
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
}
return true;
}
int VCMNackFecMethod::ComputeMaxFramesFec(
const VCMProtectionParameters* parameters) {
if (parameters->numLayers > 2) {
// For more than 2 temporal layers we will only have FEC on the base layer,
// and the base layers will be pretty far apart. Therefore we force one
// frame FEC.
return 1;
}
// We set the max number of frames to base the FEC on so that on average
// we will have complete frames in one RTT. Note that this is an upper
// bound, and that the actual number of frames used for FEC is decided by the
// RTP module based on the actual number of packets and the protection factor.
float base_layer_framerate =
parameters->frameRate /
rtc::saturated_cast<float>(1 << (parameters->numLayers - 1));
int max_frames_fec = std::max(
rtc::saturated_cast<int>(
2.0f * base_layer_framerate * parameters->rtt / 1000.0f + 0.5f),
1);
// |kUpperLimitFramesFec| is the upper limit on how many frames we
// allow any FEC to be based on.
if (max_frames_fec > kUpperLimitFramesFec) {
max_frames_fec = kUpperLimitFramesFec;
}
return max_frames_fec;
}
int VCMNackFecMethod::MaxFramesFec() const {
return _maxFramesFec;
}
bool VCMNackFecMethod::BitRateTooLowForFec(
const VCMProtectionParameters* parameters) {
// Bitrate below which we turn off FEC, regardless of reported packet loss.
// The condition should depend on resolution and content. For now, use
// threshold on bytes per frame, with some effect for the frame size.
// The condition for turning off FEC is also based on other factors,
// such as |_numLayers|, |_maxFramesFec|, and |_rtt|.
int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
int max_bytes_per_frame = kMaxBytesPerFrameForFec;
int num_pixels = parameters->codecWidth * parameters->codecHeight;
if (num_pixels <= 352 * 288) {
max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
} else if (num_pixels > 640 * 480) {
max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
}
// TODO(marpan): add condition based on maximum frames used for FEC,
// and expand condition based on frame size.
// Max round trip time threshold in ms.
const int64_t kMaxRttTurnOffFec = 200;
if (estimate_bytes_per_frame < max_bytes_per_frame &&
parameters->numLayers < 3 && parameters->rtt < kMaxRttTurnOffFec) {
return true;
}
return false;
}
bool VCMNackFecMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameters) {
// Set the effective packet loss for encoder (based on FEC code).
// Compute the effective packet loss and residual packet loss due to FEC.
VCMFecMethod::EffectivePacketLoss(parameters);
return true;
}
bool VCMNackFecMethod::UpdateParameters(
const VCMProtectionParameters* parameters) {
ProtectionFactor(parameters);
EffectivePacketLoss(parameters);
_maxFramesFec = ComputeMaxFramesFec(parameters);
if (BitRateTooLowForFec(parameters)) {
_protectionFactorK = 0;
_protectionFactorD = 0;
}
// Protection/fec rates obtained above are defined relative to total number
// of packets (total rate: source + fec) FEC in RTP module assumes
// protection factor is defined relative to source number of packets so we
// should convert the factor to reduce mismatch between mediaOpt's rate and
// the actual one
_protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
_protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
return true;
}
VCMNackMethod::VCMNackMethod() : VCMProtectionMethod() {
_type = kNack;
}
VCMNackMethod::~VCMNackMethod() {
//
}
bool VCMNackMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameter) {
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool VCMNackMethod::UpdateParameters(
const VCMProtectionParameters* parameters) {
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// nackCost = (bitRate - nackCost) * (lossPr)
return true;
}
VCMFecMethod::VCMFecMethod() : VCMProtectionMethod() {
_type = kFec;
}
VCMFecMethod::~VCMFecMethod() {
//
}
uint8_t VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
uint8_t packetFrameKey) const {
uint8_t boostRateKey = 2;
// Default: ratio scales the FEC protection up for I frames
uint8_t ratio = 1;
if (packetFrameDelta > 0) {
ratio = (int8_t)(packetFrameKey / packetFrameDelta);
}
ratio = VCM_MAX(boostRateKey, ratio);
return ratio;
}
uint8_t VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const {
return rtc::saturated_cast<uint8_t>(
VCM_MIN(255, (0.5 + 255.0 * codeRateRTP /
rtc::saturated_cast<float>(255 - codeRateRTP))));
}
// Update FEC with protectionFactorD
void VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD) {
_protectionFactorD = protectionFactorD;
}
// Update FEC with protectionFactorK
void VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK) {
_protectionFactorK = protectionFactorK;
}
bool VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters) {
// FEC PROTECTION SETTINGS: varies with packet loss and bitrate
// No protection if (filtered) packetLoss is 0
uint8_t packetLoss = rtc::saturated_cast<uint8_t>(255 * parameters->lossPr);
if (packetLoss == 0) {
_protectionFactorK = 0;
_protectionFactorD = 0;
return true;
}
// Parameters for FEC setting:
// first partition size, thresholds, table pars, spatial resoln fac.
// First partition protection: ~ 20%
uint8_t firstPartitionProt = rtc::saturated_cast<uint8_t>(255 * 0.20);
// Minimum protection level needed to generate one FEC packet for one
// source packet/frame (in RTP sender)
uint8_t minProtLevelFec = 85;
// Threshold on packetLoss and bitRrate/frameRate (=average #packets),
// above which we allocate protection to cover at least first partition.
uint8_t lossThr = 0;
uint8_t packetNumThr = 1;
// Parameters for range of rate index of table.
const uint8_t ratePar1 = 5;
const uint8_t ratePar2 = 49;
// Spatial resolution size, relative to a reference size.
float spatialSizeToRef = rtc::saturated_cast<float>(parameters->codecWidth *
parameters->codecHeight) /
(rtc::saturated_cast<float>(704 * 576));
// resolnFac: This parameter will generally increase/decrease the FEC rate
// (for fixed bitRate and packetLoss) based on system size.
// Use a smaller exponent (< 1) to control/soften system size effect.
const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
const int bitRatePerFrame = BitsPerFrame(parameters);
// Average number of packets per frame (source and fec):
const uint8_t avgTotPackets = rtc::saturated_cast<uint8_t>(
1.5f + rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0f /
rtc::saturated_cast<float>(8.0 * _maxPayloadSize));
// FEC rate parameters: for P and I frame
uint8_t codeRateDelta = 0;
uint8_t codeRateKey = 0;
// Get index for table: the FEC protection depends on an effective rate.
// The range on the rate index corresponds to rates (bps)
// from ~200k to ~8000k, for 30fps
const uint16_t effRateFecTable =
rtc::saturated_cast<uint16_t>(resolnFac * bitRatePerFrame);
uint8_t rateIndexTable = rtc::saturated_cast<uint8_t>(
VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) / ratePar1, ratePar2), 0));
// Restrict packet loss range to 50:
// current tables defined only up to 50%
if (packetLoss >= kPacketLossMax) {
packetLoss = kPacketLossMax - 1;
}
uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
// Check on table index
RTC_DCHECK_LT(indexTable, kFecRateTableSize);
// Protection factor for P frame
codeRateDelta = kFecRateTable[indexTable];
if (packetLoss > lossThr && avgTotPackets > packetNumThr) {
// Set a minimum based on first partition size.
if (codeRateDelta < firstPartitionProt) {
codeRateDelta = firstPartitionProt;
}
}
// Check limit on amount of protection for P frame; 50% is max.
if (codeRateDelta >= kPacketLossMax) {
codeRateDelta = kPacketLossMax - 1;
}
// For Key frame:
// Effectively at a higher rate, so we scale/boost the rate
// The boost factor may depend on several factors: ratio of packet
// number of I to P frames, how much protection placed on P frames, etc.
const uint8_t packetFrameDelta =
rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrame);
const uint8_t packetFrameKey =
rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrameKey);
const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta, packetFrameKey);
rateIndexTable = rtc::saturated_cast<uint8_t>(VCM_MAX(
VCM_MIN(1 + (boostKey * effRateFecTable - ratePar1) / ratePar1, ratePar2),
0));
uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
indexTableKey = VCM_MIN(indexTableKey, kFecRateTableSize);
// Check on table index
assert(indexTableKey < kFecRateTableSize);
// Protection factor for I frame
codeRateKey = kFecRateTable[indexTableKey];
// Boosting for Key frame.
int boostKeyProt = _scaleProtKey * codeRateDelta;
if (boostKeyProt >= kPacketLossMax) {
boostKeyProt = kPacketLossMax - 1;
}
// Make sure I frame protection is at least larger than P frame protection,
// and at least as high as filtered packet loss.
codeRateKey = rtc::saturated_cast<uint8_t>(
VCM_MAX(packetLoss, VCM_MAX(boostKeyProt, codeRateKey)));
// Check limit on amount of protection for I frame: 50% is max.
if (codeRateKey >= kPacketLossMax) {
codeRateKey = kPacketLossMax - 1;
}
_protectionFactorK = codeRateKey;
_protectionFactorD = codeRateDelta;
// Generally there is a rate mis-match between the FEC cost estimated
// in mediaOpt and the actual FEC cost sent out in RTP module.
// This is more significant at low rates (small # of source packets), where
// the granularity of the FEC decreases. In this case, non-zero protection
// in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
// is based on rounding off protectionFactor on actual source packet number).
// The correction factor (_corrFecCost) attempts to corrects this, at least
// for cases of low rates (small #packets) and low protection levels.
float numPacketsFl =
1.0f + (rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0 /
rtc::saturated_cast<float>(8.0 * _maxPayloadSize) +
0.5);
const float estNumFecGen =
0.5f +
rtc::saturated_cast<float>(_protectionFactorD * numPacketsFl / 255.0f);
// We reduce cost factor (which will reduce overhead for FEC and
// hybrid method) and not the protectionFactor.
_corrFecCost = 1.0f;
if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec) {
_corrFecCost = 0.5f;
}
if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec) {
_corrFecCost = 0.0f;
}
// DONE WITH FEC PROTECTION SETTINGS
return true;
}
int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
// When temporal layers are available FEC will only be applied on the base
// layer.
const float bitRateRatio =
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
parameters->numLayers, 0);
float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
float bitRate = parameters->bitRate * bitRateRatio;
float frameRate = parameters->frameRate * frameRateRatio;
// TODO(mikhal): Update factor following testing.
float adjustmentFactor = 1;
if (frameRate < 1.0f)
frameRate = 1.0f;
// Average bits per frame (units of kbits)
return rtc::saturated_cast<int>(adjustmentFactor * bitRate / frameRate);
}
bool VCMFecMethod::EffectivePacketLoss(
const VCMProtectionParameters* parameters) {
// Effective packet loss to encoder is based on RPL (residual packet loss)
// this is a soft setting based on degree of FEC protection
// RPL = received/input packet loss - average_FEC_recovery
// note: received/input packet loss may be filtered based on FilteredLoss
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters) {
// Compute the protection factor
ProtectionFactor(parameters);
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// Protection/fec rates obtained above is defined relative to total number
// of packets (total rate: source+fec) FEC in RTP module assumes protection
// factor is defined relative to source number of packets so we should
// convert the factor to reduce mismatch between mediaOpt suggested rate and
// the actual rate
_protectionFactorK = ConvertFECRate(_protectionFactorK);
_protectionFactorD = ConvertFECRate(_protectionFactorD);
return true;
}
VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs)
: _currentParameters(),
_rtt(0),
_lossPr(0.0f),
_bitRate(0.0f),
_frameRate(0.0f),
_keyFrameSize(0.0f),
_fecRateKey(0),
_fecRateDelta(0),
_lastPrUpdateT(0),
_lossPr255(0.9999f),
_lossPrHistory(),
_shortMaxLossPr255(0),
_packetsPerFrame(0.9999f),
_packetsPerFrameKey(0.9999f),
_codecWidth(0),
_codecHeight(0),
_numLayers(1) {
Reset(nowMs);
}
VCMLossProtectionLogic::~VCMLossProtectionLogic() {
Release();
}
void VCMLossProtectionLogic::SetMethod(
enum VCMProtectionMethodEnum newMethodType) {
if (_selectedMethod && _selectedMethod->Type() == newMethodType)
return;
switch (newMethodType) {
case kNack:
_selectedMethod.reset(new VCMNackMethod());
break;
case kFec:
_selectedMethod.reset(new VCMFecMethod());
break;
case kNackFec:
_selectedMethod.reset(new VCMNackFecMethod(kLowRttNackMs, -1));
break;
case kNone:
_selectedMethod.reset();
break;
}
UpdateMethod();
}
void VCMLossProtectionLogic::UpdateRtt(int64_t rtt) {
_rtt = rtt;
}
void VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
int64_t now) {
if (_lossPrHistory[0].timeMs >= 0 &&
now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs) {
if (lossPr255 > _shortMaxLossPr255) {
_shortMaxLossPr255 = lossPr255;
}
} else {
// Only add a new value to the history once a second
if (_lossPrHistory[0].timeMs == -1) {
// First, no shift
_shortMaxLossPr255 = lossPr255;
} else {
// Shift
for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--) {
_lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
_lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
}
}
if (_shortMaxLossPr255 == 0) {
_shortMaxLossPr255 = lossPr255;
}
_lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
_lossPrHistory[0].timeMs = now;
_shortMaxLossPr255 = 0;
}
}
uint8_t VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const {
uint8_t maxFound = _shortMaxLossPr255;
if (_lossPrHistory[0].timeMs == -1) {
return maxFound;
}
for (int32_t i = 0; i < kLossPrHistorySize; i++) {
if (_lossPrHistory[i].timeMs == -1) {
break;
}
if (nowMs - _lossPrHistory[i].timeMs >
kLossPrHistorySize * kLossPrShortFilterWinMs) {
// This sample (and all samples after this) is too old
break;
}
if (_lossPrHistory[i].lossPr255 > maxFound) {
// This sample is the largest one this far into the history
maxFound = _lossPrHistory[i].lossPr255;
}
}
return maxFound;
}
uint8_t VCMLossProtectionLogic::FilteredLoss(int64_t nowMs,
FilterPacketLossMode filter_mode,
uint8_t lossPr255) {
// Update the max window filter.
UpdateMaxLossHistory(lossPr255, nowMs);
// Update the recursive average filter.
_lossPr255.Apply(rtc::saturated_cast<float>(nowMs - _lastPrUpdateT),
rtc::saturated_cast<float>(lossPr255));
_lastPrUpdateT = nowMs;
// Filtered loss: default is received loss (no filtering).
uint8_t filtered_loss = lossPr255;
switch (filter_mode) {
case kNoFilter:
break;
case kAvgFilter:
filtered_loss = rtc::saturated_cast<uint8_t>(_lossPr255.filtered() + 0.5);
break;
case kMaxFilter:
filtered_loss = MaxFilteredLossPr(nowMs);
break;
}
return filtered_loss;
}
void VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc) {
_lossPr = rtc::saturated_cast<float>(packetLossEnc) / 255.0;
}
void VCMLossProtectionLogic::UpdateBitRate(float bitRate) {
_bitRate = bitRate;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets,
int64_t nowMs) {
_packetsPerFrame.Apply(
rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateT), nPackets);
_lastPacketPerFrameUpdateT = nowMs;
}
void VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets,
int64_t nowMs) {
_packetsPerFrameKey.Apply(
rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateTKey),
nPackets);
_lastPacketPerFrameUpdateTKey = nowMs;
}
void VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize) {
_keyFrameSize = keyFrameSize;
}
void VCMLossProtectionLogic::UpdateFrameSize(size_t width, size_t height) {
_codecWidth = width;
_codecHeight = height;
}
void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
_numLayers = (numLayers == 0) ? 1 : numLayers;
}
bool VCMLossProtectionLogic::UpdateMethod() {
if (!_selectedMethod)
return false;
_currentParameters.rtt = _rtt;
_currentParameters.lossPr = _lossPr;
_currentParameters.bitRate = _bitRate;
_currentParameters.frameRate = _frameRate; // rename actual frame rate?
_currentParameters.keyFrameSize = _keyFrameSize;
_currentParameters.fecRateDelta = _fecRateDelta;
_currentParameters.fecRateKey = _fecRateKey;
_currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
_currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
_currentParameters.codecWidth = _codecWidth;
_currentParameters.codecHeight = _codecHeight;
_currentParameters.numLayers = _numLayers;
return _selectedMethod->UpdateParameters(&_currentParameters);
}
VCMProtectionMethod* VCMLossProtectionLogic::SelectedMethod() const {
return _selectedMethod.get();
}
VCMProtectionMethodEnum VCMLossProtectionLogic::SelectedType() const {
return _selectedMethod ? _selectedMethod->Type() : kNone;
}
void VCMLossProtectionLogic::Reset(int64_t nowMs) {
_lastPrUpdateT = nowMs;
_lastPacketPerFrameUpdateT = nowMs;
_lastPacketPerFrameUpdateTKey = nowMs;
_lossPr255.Reset(0.9999f);
_packetsPerFrame.Reset(0.9999f);
_fecRateDelta = _fecRateKey = 0;
for (int32_t i = 0; i < kLossPrHistorySize; i++) {
_lossPrHistory[i].lossPr255 = 0;
_lossPrHistory[i].timeMs = -1;
}
_shortMaxLossPr255 = 0;
Release();
}
void VCMLossProtectionLogic::Release() {
_selectedMethod.reset();
}
} // namespace media_optimization
} // namespace webrtc