|  | /* | 
|  | *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <memory> | 
|  | #include <vector> | 
|  |  | 
|  | #include "api/array_view.h" | 
|  | #include "common_video/h264/h264_common.h" | 
|  | #include "modules/include/module_common_types.h" | 
|  | #include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h" | 
|  | #include "modules/rtp_rtcp/source/byte_io.h" | 
|  | #include "modules/rtp_rtcp/source/rtp_format_h264.h" | 
|  | #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" | 
|  | #include "test/gmock.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | using ::testing::Each; | 
|  | using ::testing::ElementsAre; | 
|  | using ::testing::ElementsAreArray; | 
|  | using ::testing::Eq; | 
|  | using ::testing::IsEmpty; | 
|  | using ::testing::SizeIs; | 
|  |  | 
|  | constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr; | 
|  | constexpr size_t kMaxPayloadSize = 1200; | 
|  | constexpr size_t kLengthFieldLength = 2; | 
|  | constexpr RtpPacketizer::PayloadSizeLimits kNoLimits; | 
|  |  | 
|  | enum Nalu { | 
|  | kSlice = 1, | 
|  | kIdr = 5, | 
|  | kSei = 6, | 
|  | kSps = 7, | 
|  | kPps = 8, | 
|  | kStapA = 24, | 
|  | kFuA = 28 | 
|  | }; | 
|  |  | 
|  | static const size_t kNalHeaderSize = 1; | 
|  | static const size_t kFuAHeaderSize = 2; | 
|  |  | 
|  | // Bit masks for FU (A and B) indicators. | 
|  | enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 
|  |  | 
|  | // Bit masks for FU (A and B) headers. | 
|  | enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 
|  |  | 
|  | RTPFragmentationHeader CreateFragmentation(rtc::ArrayView<const size_t> sizes) { | 
|  | RTPFragmentationHeader fragmentation; | 
|  | fragmentation.VerifyAndAllocateFragmentationHeader(sizes.size()); | 
|  | size_t offset = 0; | 
|  | for (size_t i = 0; i < sizes.size(); ++i) { | 
|  | fragmentation.fragmentationOffset[i] = offset; | 
|  | fragmentation.fragmentationLength[i] = sizes[i]; | 
|  | offset += sizes[i]; | 
|  | } | 
|  | return fragmentation; | 
|  | } | 
|  |  | 
|  | // Create fragmentation with single fragment of same size as |frame| | 
|  | RTPFragmentationHeader NoFragmentation(rtc::ArrayView<const uint8_t> frame) { | 
|  | size_t frame_size[] = {frame.size()}; | 
|  | return CreateFragmentation(frame_size); | 
|  | } | 
|  |  | 
|  | // Create frame of given size. | 
|  | rtc::Buffer CreateFrame(size_t frame_size) { | 
|  | rtc::Buffer frame(frame_size); | 
|  | // Set some valid header. | 
|  | frame[0] = 0x01; | 
|  | // Generate payload to detect when shifted payload was put into a packet. | 
|  | for (size_t i = 1; i < frame_size; ++i) | 
|  | frame[i] = static_cast<uint8_t>(i); | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | // Create frame with size deduced from fragmentation. | 
|  | rtc::Buffer CreateFrame(const RTPFragmentationHeader& fragmentation) { | 
|  | size_t last_frame_index = fragmentation.fragmentationVectorSize - 1; | 
|  | size_t frame_size = fragmentation.fragmentationOffset[last_frame_index] + | 
|  | fragmentation.fragmentationLength[last_frame_index]; | 
|  | rtc::Buffer frame = CreateFrame(frame_size); | 
|  | // Set some headers. | 
|  | // Tests can expect those are valid but shouln't rely on actual values. | 
|  | for (size_t i = 0; i <= last_frame_index; ++i) { | 
|  | frame[fragmentation.fragmentationOffset[i]] = i + 1; | 
|  | } | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | std::vector<RtpPacketToSend> FetchAllPackets(RtpPacketizerH264* packetizer) { | 
|  | std::vector<RtpPacketToSend> result; | 
|  | size_t num_packets = packetizer->NumPackets(); | 
|  | result.reserve(num_packets); | 
|  | RtpPacketToSend packet(kNoExtensions); | 
|  | while (packetizer->NextPacket(&packet)) { | 
|  | result.push_back(packet); | 
|  | } | 
|  | EXPECT_THAT(result, SizeIs(num_packets)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Tests that should work with both packetization mode 0 and | 
|  | // packetization mode 1. | 
|  | class RtpPacketizerH264ModeTest | 
|  | : public ::testing::TestWithParam<H264PacketizationMode> {}; | 
|  |  | 
|  | TEST_P(RtpPacketizerH264ModeTest, SingleNalu) { | 
|  | const uint8_t frame[2] = {kIdr, 0xFF}; | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, kNoLimits, GetParam(), | 
|  | NoFragmentation(frame)); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(1)); | 
|  | EXPECT_THAT(packets[0].payload(), ElementsAreArray(frame)); | 
|  | } | 
|  |  | 
|  | TEST_P(RtpPacketizerH264ModeTest, SingleNaluTwoPackets) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = kMaxPayloadSize; | 
|  | const size_t fragment_sizes[] = {kMaxPayloadSize, 100}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragment_sizes); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(2)); | 
|  | EXPECT_THAT(packets[0].payload(), | 
|  | ElementsAreArray(frame.data(), kMaxPayloadSize)); | 
|  | EXPECT_THAT(packets[1].payload(), | 
|  | ElementsAreArray(frame.data() + kMaxPayloadSize, 100)); | 
|  | } | 
|  |  | 
|  | TEST_P(RtpPacketizerH264ModeTest, | 
|  | SingleNaluFirstPacketReductionAppliesOnlyToFirstFragment) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 200; | 
|  | limits.first_packet_reduction_len = 5; | 
|  | const size_t fragments[] = {195, 200, 200}; | 
|  |  | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(3)); | 
|  | const uint8_t* next_fragment = frame.data(); | 
|  | EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 195)); | 
|  | next_fragment += 195; | 
|  | EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200)); | 
|  | next_fragment += 200; | 
|  | EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 200)); | 
|  | } | 
|  |  | 
|  | TEST_P(RtpPacketizerH264ModeTest, | 
|  | SingleNaluLastPacketReductionAppliesOnlyToLastFragment) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 200; | 
|  | limits.last_packet_reduction_len = 5; | 
|  | const size_t fragments[] = {200, 200, 195}; | 
|  |  | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, limits, GetParam(), fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(3)); | 
|  | const uint8_t* next_fragment = frame.data(); | 
|  | EXPECT_THAT(packets[0].payload(), ElementsAreArray(next_fragment, 200)); | 
|  | next_fragment += 200; | 
|  | EXPECT_THAT(packets[1].payload(), ElementsAreArray(next_fragment, 200)); | 
|  | next_fragment += 200; | 
|  | EXPECT_THAT(packets[2].payload(), ElementsAreArray(next_fragment, 195)); | 
|  | } | 
|  |  | 
|  | TEST_P(RtpPacketizerH264ModeTest, | 
|  | SingleNaluFirstAndLastPacketReductionSumsForSinglePacket) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 200; | 
|  | limits.first_packet_reduction_len = 20; | 
|  | limits.last_packet_reduction_len = 30; | 
|  | rtc::Buffer frame = CreateFrame(150); | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, limits, GetParam(), | 
|  | NoFragmentation(frame)); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | EXPECT_THAT(packets, SizeIs(1)); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | PacketMode, | 
|  | RtpPacketizerH264ModeTest, | 
|  | ::testing::Values(H264PacketizationMode::SingleNalUnit, | 
|  | H264PacketizationMode::NonInterleaved)); | 
|  |  | 
|  | // Aggregation tests. | 
|  | TEST(RtpPacketizerH264Test, StapA) { | 
|  | size_t fragments[] = {2, 2, 0x123}; | 
|  |  | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, kNoLimits, H264PacketizationMode::NonInterleaved, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(1)); | 
|  | auto payload = packets[0].payload(); | 
|  | EXPECT_EQ(payload.size(), | 
|  | kNalHeaderSize + 3 * kLengthFieldLength + frame.size()); | 
|  |  | 
|  | EXPECT_EQ(payload[0], kStapA); | 
|  | payload = payload.subview(kNalHeaderSize); | 
|  | // 1st fragment. | 
|  | EXPECT_THAT(payload.subview(0, kLengthFieldLength), | 
|  | ElementsAre(0, 2));  // Size. | 
|  | EXPECT_THAT(payload.subview(kLengthFieldLength, 2), | 
|  | ElementsAreArray(frame.data(), 2)); | 
|  | payload = payload.subview(kLengthFieldLength + 2); | 
|  | // 2nd fragment. | 
|  | EXPECT_THAT(payload.subview(0, kLengthFieldLength), | 
|  | ElementsAre(0, 2));  // Size. | 
|  | EXPECT_THAT(payload.subview(kLengthFieldLength, 2), | 
|  | ElementsAreArray(frame.data() + 2, 2)); | 
|  | payload = payload.subview(kLengthFieldLength + 2); | 
|  | // 3rd fragment. | 
|  | EXPECT_THAT(payload.subview(0, kLengthFieldLength), | 
|  | ElementsAre(0x1, 0x23));  // Size. | 
|  | EXPECT_THAT(payload.subview(kLengthFieldLength), | 
|  | ElementsAreArray(frame.data() + 4, 0x123)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, SingleNalUnitModeHasNoStapA) { | 
|  | // This is the same setup as for the StapA test. | 
|  | size_t fragments[] = {2, 2, 0x123}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, kNoLimits, H264PacketizationMode::SingleNalUnit, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | // The three fragments should be returned as three packets. | 
|  | ASSERT_THAT(packets, SizeIs(3)); | 
|  | EXPECT_EQ(packets[0].payload_size(), 2u); | 
|  | EXPECT_EQ(packets[1].payload_size(), 2u); | 
|  | EXPECT_EQ(packets[2].payload_size(), 0x123u); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, StapARespectsFirstPacketReduction) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1000; | 
|  | limits.first_packet_reduction_len = 100; | 
|  | const size_t kFirstFragmentSize = | 
|  | limits.max_payload_len - limits.first_packet_reduction_len; | 
|  | size_t fragments[] = {kFirstFragmentSize, 2, 2}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(2)); | 
|  | // Expect 1st packet is single nalu. | 
|  | EXPECT_THAT(packets[0].payload(), | 
|  | ElementsAreArray(frame.data(), kFirstFragmentSize)); | 
|  | // Expect 2nd packet is aggregate of last two fragments. | 
|  | const uint8_t* tail = frame.data() + kFirstFragmentSize; | 
|  | EXPECT_THAT(packets[1].payload(), ElementsAre(kStapA,                  // | 
|  | 0, 2, tail[0], tail[1],  // | 
|  | 0, 2, tail[2], tail[3])); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, StapARespectsLastPacketReduction) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1000; | 
|  | limits.last_packet_reduction_len = 100; | 
|  | const size_t kLastFragmentSize = | 
|  | limits.max_payload_len - limits.last_packet_reduction_len; | 
|  | size_t fragments[] = {2, 2, kLastFragmentSize}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(2)); | 
|  | // Expect 1st packet is aggregate of 1st two fragments. | 
|  | EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA,                    // | 
|  | 0, 2, frame[0], frame[1],  // | 
|  | 0, 2, frame[2], frame[3])); | 
|  | // Expect 2nd packet is single nalu. | 
|  | EXPECT_THAT(packets[1].payload(), | 
|  | ElementsAreArray(frame.data() + 4, kLastFragmentSize)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, TooSmallForStapAHeaders) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1000; | 
|  | const size_t kLastFragmentSize = | 
|  | limits.max_payload_len - 3 * kLengthFieldLength - 4; | 
|  | size_t fragments[] = {2, 2, kLastFragmentSize}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(2)); | 
|  | // Expect 1st packet is aggregate of 1st two fragments. | 
|  | EXPECT_THAT(packets[0].payload(), ElementsAre(kStapA,                    // | 
|  | 0, 2, frame[0], frame[1],  // | 
|  | 0, 2, frame[2], frame[3])); | 
|  | // Expect 2nd packet is single nalu. | 
|  | EXPECT_THAT(packets[1].payload(), | 
|  | ElementsAreArray(frame.data() + 4, kLastFragmentSize)); | 
|  | } | 
|  |  | 
|  | // Fragmentation + aggregation. | 
|  | TEST(RtpPacketizerH264Test, MixedStapAFUA) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 100; | 
|  | const size_t kFuaPayloadSize = 70; | 
|  | const size_t kFuaNaluSize = kNalHeaderSize + 2 * kFuaPayloadSize; | 
|  | const size_t kStapANaluSize = 20; | 
|  | size_t fragments[] = {kFuaNaluSize, kStapANaluSize, kStapANaluSize}; | 
|  | RTPFragmentationHeader fragmentation = CreateFragmentation(fragments); | 
|  | rtc::Buffer frame = CreateFrame(fragmentation); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, limits, H264PacketizationMode::NonInterleaved, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(3)); | 
|  | const uint8_t* next_fragment = frame.data() + kNalHeaderSize; | 
|  | // First expect two FU-A packets. | 
|  | EXPECT_THAT(packets[0].payload().subview(0, kFuAHeaderSize), | 
|  | ElementsAre(kFuA, FuDefs::kSBit | frame[0])); | 
|  | EXPECT_THAT(packets[0].payload().subview(kFuAHeaderSize), | 
|  | ElementsAreArray(next_fragment, kFuaPayloadSize)); | 
|  | next_fragment += kFuaPayloadSize; | 
|  |  | 
|  | EXPECT_THAT(packets[1].payload().subview(0, kFuAHeaderSize), | 
|  | ElementsAre(kFuA, FuDefs::kEBit | frame[0])); | 
|  | EXPECT_THAT(packets[1].payload().subview(kFuAHeaderSize), | 
|  | ElementsAreArray(next_fragment, kFuaPayloadSize)); | 
|  | next_fragment += kFuaPayloadSize; | 
|  |  | 
|  | // Then expect one STAP-A packet with two nal units. | 
|  | EXPECT_THAT(packets[2].payload()[0], kStapA); | 
|  | auto payload = packets[2].payload().subview(kNalHeaderSize); | 
|  | EXPECT_THAT(payload.subview(0, kLengthFieldLength), | 
|  | ElementsAre(0, kStapANaluSize)); | 
|  | EXPECT_THAT(payload.subview(kLengthFieldLength, kStapANaluSize), | 
|  | ElementsAreArray(next_fragment, kStapANaluSize)); | 
|  | payload = payload.subview(kLengthFieldLength + kStapANaluSize); | 
|  | next_fragment += kStapANaluSize; | 
|  | EXPECT_THAT(payload.subview(0, kLengthFieldLength), | 
|  | ElementsAre(0, kStapANaluSize)); | 
|  | EXPECT_THAT(payload.subview(kLengthFieldLength), | 
|  | ElementsAreArray(next_fragment, kStapANaluSize)); | 
|  | } | 
|  |  | 
|  | // Splits frame with payload size |frame_payload_size| without fragmentation, | 
|  | // Returns sizes of the payloads excluding fua headers. | 
|  | std::vector<int> TestFua(size_t frame_payload_size, | 
|  | const RtpPacketizer::PayloadSizeLimits& limits) { | 
|  | rtc::Buffer frame = CreateFrame(kNalHeaderSize + frame_payload_size); | 
|  |  | 
|  | RtpPacketizerH264 packetizer(frame, limits, | 
|  | H264PacketizationMode::NonInterleaved, | 
|  | NoFragmentation(frame)); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | EXPECT_GE(packets.size(), 2u);  // Single packet indicates it is not FuA. | 
|  | std::vector<uint16_t> fua_header; | 
|  | std::vector<int> payload_sizes; | 
|  |  | 
|  | for (const RtpPacketToSend& packet : packets) { | 
|  | auto payload = packet.payload(); | 
|  | EXPECT_GT(payload.size(), kFuAHeaderSize); | 
|  | fua_header.push_back((payload[0] << 8) | payload[1]); | 
|  | payload_sizes.push_back(payload.size() - kFuAHeaderSize); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(fua_header.front() & FuDefs::kSBit); | 
|  | EXPECT_TRUE(fua_header.back() & FuDefs::kEBit); | 
|  | // Clear S and E bits before testing all are duplicating same original header. | 
|  | fua_header.front() &= ~FuDefs::kSBit; | 
|  | fua_header.back() &= ~FuDefs::kEBit; | 
|  | EXPECT_THAT(fua_header, Each(Eq((kFuA << 8) | frame[0]))); | 
|  |  | 
|  | return payload_sizes; | 
|  | } | 
|  |  | 
|  | // Fragmentation tests. | 
|  | TEST(RtpPacketizerH264Test, FUAOddSize) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1200; | 
|  | EXPECT_THAT(TestFua(1200, limits), ElementsAre(600, 600)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUAWithFirstPacketReduction) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1200; | 
|  | limits.first_packet_reduction_len = 4; | 
|  | limits.single_packet_reduction_len = 4; | 
|  | EXPECT_THAT(TestFua(1198, limits), ElementsAre(597, 601)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUAWithLastPacketReduction) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1200; | 
|  | limits.last_packet_reduction_len = 4; | 
|  | limits.single_packet_reduction_len = 4; | 
|  | EXPECT_THAT(TestFua(1198, limits), ElementsAre(601, 597)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUAWithSinglePacketReduction) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1199; | 
|  | limits.single_packet_reduction_len = 200; | 
|  | EXPECT_THAT(TestFua(1000, limits), ElementsAre(500, 500)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUAEvenSize) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1200; | 
|  | EXPECT_THAT(TestFua(1201, limits), ElementsAre(600, 601)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUARounding) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1448; | 
|  | EXPECT_THAT(TestFua(10123, limits), | 
|  | ElementsAre(1265, 1265, 1265, 1265, 1265, 1266, 1266, 1266)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, FUABig) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = 1200; | 
|  | // Generate 10 full sized packets, leave room for FU-A headers. | 
|  | EXPECT_THAT( | 
|  | TestFua(10 * (1200 - kFuAHeaderSize), limits), | 
|  | ElementsAre(1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198, 1198)); | 
|  | } | 
|  |  | 
|  | TEST(RtpPacketizerH264Test, RejectsOverlongDataInPacketizationMode0) { | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | rtc::Buffer frame = CreateFrame(kMaxPayloadSize + 1); | 
|  | RTPFragmentationHeader fragmentation = NoFragmentation(frame); | 
|  |  | 
|  | RtpPacketizerH264 packetizer( | 
|  | frame, limits, H264PacketizationMode::SingleNalUnit, fragmentation); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | EXPECT_THAT(packets, IsEmpty()); | 
|  | } | 
|  |  | 
|  | const uint8_t kStartSequence[] = {0x00, 0x00, 0x00, 0x01}; | 
|  | const uint8_t kOriginalSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, | 
|  | 0xF4, 0x05, 0x03, 0xC7, 0xC0}; | 
|  | const uint8_t kRewrittenSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, | 
|  | 0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00}; | 
|  | const uint8_t kIdrOne[] = {kIdr, 0xFF, 0x00, 0x00, 0x04}; | 
|  | const uint8_t kIdrTwo[] = {kIdr, 0xFF, 0x00, 0x11}; | 
|  |  | 
|  | class RtpPacketizerH264TestSpsRewriting : public ::testing::Test { | 
|  | public: | 
|  | void SetUp() override { | 
|  | fragmentation_header_.VerifyAndAllocateFragmentationHeader(3); | 
|  | fragmentation_header_.fragmentationVectorSize = 3; | 
|  | in_buffer_.AppendData(kStartSequence); | 
|  |  | 
|  | fragmentation_header_.fragmentationOffset[0] = in_buffer_.size(); | 
|  | fragmentation_header_.fragmentationLength[0] = sizeof(kOriginalSps); | 
|  | in_buffer_.AppendData(kOriginalSps); | 
|  |  | 
|  | fragmentation_header_.fragmentationOffset[1] = in_buffer_.size(); | 
|  | fragmentation_header_.fragmentationLength[1] = sizeof(kIdrOne); | 
|  | in_buffer_.AppendData(kIdrOne); | 
|  |  | 
|  | fragmentation_header_.fragmentationOffset[2] = in_buffer_.size(); | 
|  | fragmentation_header_.fragmentationLength[2] = sizeof(kIdrTwo); | 
|  | in_buffer_.AppendData(kIdrTwo); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | rtc::Buffer in_buffer_; | 
|  | RTPFragmentationHeader fragmentation_header_; | 
|  | }; | 
|  |  | 
|  | TEST_F(RtpPacketizerH264TestSpsRewriting, FuASps) { | 
|  | const size_t kHeaderOverhead = kFuAHeaderSize + 1; | 
|  |  | 
|  | // Set size to fragment SPS into two FU-A packets. | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = sizeof(kOriginalSps) - 2 + kHeaderOverhead; | 
|  | RtpPacketizerH264 packetizer(in_buffer_, limits, | 
|  | H264PacketizationMode::NonInterleaved, | 
|  | fragmentation_header_); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | size_t offset = H264::kNaluTypeSize; | 
|  | size_t length = packets[0].payload_size() - kFuAHeaderSize; | 
|  | EXPECT_THAT(packets[0].payload().subview(kFuAHeaderSize), | 
|  | ElementsAreArray(&kRewrittenSps[offset], length)); | 
|  | offset += length; | 
|  |  | 
|  | length = packets[1].payload_size() - kFuAHeaderSize; | 
|  | EXPECT_THAT(packets[1].payload().subview(kFuAHeaderSize), | 
|  | ElementsAreArray(&kRewrittenSps[offset], length)); | 
|  | offset += length; | 
|  |  | 
|  | EXPECT_EQ(offset, sizeof(kRewrittenSps)); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpPacketizerH264TestSpsRewriting, StapASps) { | 
|  | const size_t kHeaderOverhead = kFuAHeaderSize + 1; | 
|  | const size_t kExpectedTotalSize = H264::kNaluTypeSize +  // Stap-A type. | 
|  | sizeof(kRewrittenSps) + sizeof(kIdrOne) + | 
|  | sizeof(kIdrTwo) + (kLengthFieldLength * 3); | 
|  |  | 
|  | // Set size to include SPS and the rest of the packets in a Stap-A package. | 
|  | RtpPacketizer::PayloadSizeLimits limits; | 
|  | limits.max_payload_len = kExpectedTotalSize + kHeaderOverhead; | 
|  |  | 
|  | RtpPacketizerH264 packetizer(in_buffer_, limits, | 
|  | H264PacketizationMode::NonInterleaved, | 
|  | fragmentation_header_); | 
|  | std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer); | 
|  |  | 
|  | ASSERT_THAT(packets, SizeIs(1)); | 
|  | EXPECT_EQ(packets[0].payload_size(), kExpectedTotalSize); | 
|  | EXPECT_THAT( | 
|  | packets[0].payload().subview(H264::kNaluTypeSize + kLengthFieldLength, | 
|  | sizeof(kRewrittenSps)), | 
|  | ElementsAreArray(kRewrittenSps)); | 
|  | } | 
|  |  | 
|  | struct H264ParsedPayload : public RtpDepacketizer::ParsedPayload { | 
|  | RTPVideoHeaderH264& h264() { | 
|  | return absl::get<RTPVideoHeaderH264>(video.video_type_header); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class RtpDepacketizerH264Test : public ::testing::Test { | 
|  | protected: | 
|  | RtpDepacketizerH264Test() | 
|  | : depacketizer_(RtpDepacketizer::Create(kVideoCodecH264)) {} | 
|  |  | 
|  | void ExpectPacket(H264ParsedPayload* parsed_payload, | 
|  | const uint8_t* data, | 
|  | size_t length) { | 
|  | ASSERT_TRUE(parsed_payload != NULL); | 
|  | EXPECT_THAT(std::vector<uint8_t>( | 
|  | parsed_payload->payload, | 
|  | parsed_payload->payload + parsed_payload->payload_length), | 
|  | ::testing::ElementsAreArray(data, length)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<RtpDepacketizer> depacketizer_; | 
|  | }; | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestSingleNalu) { | 
|  | uint8_t packet[2] = {0x05, 0xFF};  // F=0, NRI=0, Type=5 (IDR). | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); | 
|  | ExpectPacket(&payload, packet, sizeof(packet)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | EXPECT_EQ(kH264SingleNalu, payload.h264().packetization_type); | 
|  | EXPECT_EQ(kIdr, payload.h264().nalu_type); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestSingleNaluSpsWithResolution) { | 
|  | uint8_t packet[] = {kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, | 
|  | 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, | 
|  | 0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25}; | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); | 
|  | ExpectPacket(&payload, packet, sizeof(packet)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | EXPECT_EQ(kH264SingleNalu, payload.h264().packetization_type); | 
|  | EXPECT_EQ(1280u, payload.video_header().width); | 
|  | EXPECT_EQ(720u, payload.video_header().height); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestStapAKey) { | 
|  | // clang-format off | 
|  | const NaluInfo kExpectedNalus[] = { {H264::kSps, 0, -1}, | 
|  | {H264::kPps, 1, 2}, | 
|  | {H264::kIdr, -1, 0} }; | 
|  | uint8_t packet[] = {kStapA,  // F=0, NRI=0, Type=24. | 
|  | // Length, nal header, payload. | 
|  | 0, 0x18, kExpectedNalus[0].type, | 
|  | 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, 0xBA, | 
|  | 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, 0x00, 0x03, | 
|  | 0x2A, 0xE0, 0xF1, 0x83, 0x25, | 
|  | 0, 0xD, kExpectedNalus[1].type, | 
|  | 0x69, 0xFC, 0x0, 0x0, 0x3, 0x0, 0x7, 0xFF, 0xFF, 0xFF, | 
|  | 0xF6, 0x40, | 
|  | 0, 0xB, kExpectedNalus[2].type, | 
|  | 0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0}; | 
|  | // clang-format on | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); | 
|  | ExpectPacket(&payload, packet, sizeof(packet)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | const RTPVideoHeaderH264& h264 = payload.h264(); | 
|  | EXPECT_EQ(kH264StapA, h264.packetization_type); | 
|  | // NALU type for aggregated packets is the type of the first packet only. | 
|  | EXPECT_EQ(kSps, h264.nalu_type); | 
|  | ASSERT_EQ(3u, h264.nalus_length); | 
|  | for (size_t i = 0; i < h264.nalus_length; ++i) { | 
|  | EXPECT_EQ(kExpectedNalus[i].type, h264.nalus[i].type) | 
|  | << "Failed parsing nalu " << i; | 
|  | EXPECT_EQ(kExpectedNalus[i].sps_id, h264.nalus[i].sps_id) | 
|  | << "Failed parsing nalu " << i; | 
|  | EXPECT_EQ(kExpectedNalus[i].pps_id, h264.nalus[i].pps_id) | 
|  | << "Failed parsing nalu " << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestStapANaluSpsWithResolution) { | 
|  | uint8_t packet[] = {kStapA,  // F=0, NRI=0, Type=24. | 
|  | // Length (2 bytes), nal header, payload. | 
|  | 0x00, 0x19, kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, | 
|  | 0x50, 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, | 
|  | 0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25, 0x80, | 
|  | 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, 0x04, kIdr, 0xFF, | 
|  | 0x00, 0x11}; | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); | 
|  | ExpectPacket(&payload, packet, sizeof(packet)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | EXPECT_EQ(kH264StapA, payload.h264().packetization_type); | 
|  | EXPECT_EQ(1280u, payload.video_header().width); | 
|  | EXPECT_EQ(720u, payload.video_header().height); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestEmptyStapARejected) { | 
|  | uint8_t lone_empty_packet[] = {kStapA, 0x00, 0x00}; | 
|  |  | 
|  | uint8_t leading_empty_packet[] = {kStapA, 0x00, 0x00, 0x00, 0x04, | 
|  | kIdr,   0xFF, 0x00, 0x11}; | 
|  |  | 
|  | uint8_t middle_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, | 
|  | 0x00,   0x00, 0x04, kIdr, 0xFF, 0x00, 0x11}; | 
|  |  | 
|  | uint8_t trailing_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, | 
|  | 0xFF,   0x00, 0x00, 0x00}; | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, lone_empty_packet, | 
|  | sizeof(lone_empty_packet))); | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, leading_empty_packet, | 
|  | sizeof(leading_empty_packet))); | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, middle_empty_packet, | 
|  | sizeof(middle_empty_packet))); | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, trailing_empty_packet, | 
|  | sizeof(trailing_empty_packet))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, DepacketizeWithRewriting) { | 
|  | rtc::Buffer in_buffer; | 
|  | rtc::Buffer out_buffer; | 
|  |  | 
|  | uint8_t kHeader[2] = {kStapA}; | 
|  | in_buffer.AppendData(kHeader, 1); | 
|  | out_buffer.AppendData(kHeader, 1); | 
|  |  | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kOriginalSps); | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps)); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kRewrittenSps); | 
|  |  | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kIdrOne); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kIdrOne); | 
|  |  | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kIdrTwo); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kIdrTwo); | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_TRUE( | 
|  | depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size())); | 
|  |  | 
|  | std::vector<uint8_t> expected_packet_payload( | 
|  | out_buffer.data(), &out_buffer.data()[out_buffer.size()]); | 
|  |  | 
|  | EXPECT_THAT( | 
|  | expected_packet_payload, | 
|  | ::testing::ElementsAreArray(payload.payload, payload.payload_length)); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, DepacketizeWithDoubleRewriting) { | 
|  | rtc::Buffer in_buffer; | 
|  | rtc::Buffer out_buffer; | 
|  |  | 
|  | uint8_t kHeader[2] = {kStapA}; | 
|  | in_buffer.AppendData(kHeader, 1); | 
|  | out_buffer.AppendData(kHeader, 1); | 
|  |  | 
|  | // First SPS will be kept... | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kOriginalSps); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kOriginalSps); | 
|  |  | 
|  | // ...only the second one will be rewritten. | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kOriginalSps); | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps)); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kRewrittenSps); | 
|  |  | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kIdrOne); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kIdrOne); | 
|  |  | 
|  | ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo)); | 
|  | in_buffer.AppendData(kHeader, 2); | 
|  | in_buffer.AppendData(kIdrTwo); | 
|  | out_buffer.AppendData(kHeader, 2); | 
|  | out_buffer.AppendData(kIdrTwo); | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_TRUE( | 
|  | depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size())); | 
|  |  | 
|  | std::vector<uint8_t> expected_packet_payload( | 
|  | out_buffer.data(), &out_buffer.data()[out_buffer.size()]); | 
|  |  | 
|  | EXPECT_THAT( | 
|  | expected_packet_payload, | 
|  | ::testing::ElementsAreArray(payload.payload, payload.payload_length)); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestStapADelta) { | 
|  | uint8_t packet[16] = {kStapA,  // F=0, NRI=0, Type=24. | 
|  | // Length, nal header, payload. | 
|  | 0, 0x02, kSlice, 0xFF, 0, 0x03, kSlice, 0xFF, 0x00, 0, | 
|  | 0x04, kSlice, 0xFF, 0x00, 0x11}; | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); | 
|  | ExpectPacket(&payload, packet, sizeof(packet)); | 
|  | EXPECT_EQ(kVideoFrameDelta, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | EXPECT_EQ(kH264StapA, payload.h264().packetization_type); | 
|  | // NALU type for aggregated packets is the type of the first packet only. | 
|  | EXPECT_EQ(kSlice, payload.h264().nalu_type); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestFuA) { | 
|  | // clang-format off | 
|  | uint8_t packet1[] = { | 
|  | kFuA,          // F=0, NRI=0, Type=28. | 
|  | kSBit | kIdr,  // FU header. | 
|  | 0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0  // Payload. | 
|  | }; | 
|  | // clang-format on | 
|  | const uint8_t kExpected1[] = {kIdr, 0x85, 0xB8, 0x0,  0x4, 0x0, | 
|  | 0x0,  0x13, 0x93, 0x12, 0x0}; | 
|  |  | 
|  | uint8_t packet2[] = { | 
|  | kFuA,  // F=0, NRI=0, Type=28. | 
|  | kIdr,  // FU header. | 
|  | 0x02   // Payload. | 
|  | }; | 
|  | const uint8_t kExpected2[] = {0x02}; | 
|  |  | 
|  | uint8_t packet3[] = { | 
|  | kFuA,          // F=0, NRI=0, Type=28. | 
|  | kEBit | kIdr,  // FU header. | 
|  | 0x03           // Payload. | 
|  | }; | 
|  | const uint8_t kExpected3[] = {0x03}; | 
|  |  | 
|  | H264ParsedPayload payload; | 
|  |  | 
|  | // We expect that the first packet is one byte shorter since the FU-A header | 
|  | // has been replaced by the original nal header. | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet1, sizeof(packet1))); | 
|  | ExpectPacket(&payload, kExpected1, sizeof(kExpected1)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_TRUE(payload.video_header().is_first_packet_in_frame); | 
|  | const RTPVideoHeaderH264& h264 = payload.h264(); | 
|  | EXPECT_EQ(kH264FuA, h264.packetization_type); | 
|  | EXPECT_EQ(kIdr, h264.nalu_type); | 
|  | ASSERT_EQ(1u, h264.nalus_length); | 
|  | EXPECT_EQ(static_cast<H264::NaluType>(kIdr), h264.nalus[0].type); | 
|  | EXPECT_EQ(-1, h264.nalus[0].sps_id); | 
|  | EXPECT_EQ(0, h264.nalus[0].pps_id); | 
|  |  | 
|  | // Following packets will be 2 bytes shorter since they will only be appended | 
|  | // onto the first packet. | 
|  | payload = H264ParsedPayload(); | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet2, sizeof(packet2))); | 
|  | ExpectPacket(&payload, kExpected2, sizeof(kExpected2)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_FALSE(payload.video_header().is_first_packet_in_frame); | 
|  | { | 
|  | const RTPVideoHeaderH264& h264 = payload.h264(); | 
|  | EXPECT_EQ(kH264FuA, h264.packetization_type); | 
|  | EXPECT_EQ(kIdr, h264.nalu_type); | 
|  | // NALU info is only expected for the first FU-A packet. | 
|  | EXPECT_EQ(0u, h264.nalus_length); | 
|  | } | 
|  |  | 
|  | payload = H264ParsedPayload(); | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, packet3, sizeof(packet3))); | 
|  | ExpectPacket(&payload, kExpected3, sizeof(kExpected3)); | 
|  | EXPECT_EQ(kVideoFrameKey, payload.frame_type); | 
|  | EXPECT_EQ(kVideoCodecH264, payload.video_header().codec); | 
|  | EXPECT_FALSE(payload.video_header().is_first_packet_in_frame); | 
|  | { | 
|  | const RTPVideoHeaderH264& h264 = payload.h264(); | 
|  | EXPECT_EQ(kH264FuA, h264.packetization_type); | 
|  | EXPECT_EQ(kIdr, h264.nalu_type); | 
|  | // NALU info is only expected for the first FU-A packet. | 
|  | ASSERT_EQ(0u, h264.nalus_length); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestEmptyPayload) { | 
|  | // Using a wild pointer to crash on accesses from inside the depacketizer. | 
|  | uint8_t* garbage_ptr = reinterpret_cast<uint8_t*>(0x4711); | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, garbage_ptr, 0)); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestTruncatedFuaNalu) { | 
|  | const uint8_t kPayload[] = {0x9c}; | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestTruncatedSingleStapANalu) { | 
|  | const uint8_t kPayload[] = {0xd8, 0x27}; | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestStapAPacketWithTruncatedNalUnits) { | 
|  | const uint8_t kPayload[] = {0x58, 0xCB, 0xED, 0xDF}; | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestTruncationJustAfterSingleStapANalu) { | 
|  | const uint8_t kPayload[] = {0x38, 0x27, 0x27}; | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestShortSpsPacket) { | 
|  | const uint8_t kPayload[] = {0x27, 0x80, 0x00}; | 
|  | H264ParsedPayload payload; | 
|  | EXPECT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | } | 
|  |  | 
|  | TEST_F(RtpDepacketizerH264Test, TestSeiPacket) { | 
|  | const uint8_t kPayload[] = { | 
|  | kSei,                   // F=0, NRI=0, Type=6. | 
|  | 0x03, 0x03, 0x03, 0x03  // Payload. | 
|  | }; | 
|  | H264ParsedPayload payload; | 
|  | ASSERT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); | 
|  | const RTPVideoHeaderH264& h264 = payload.h264(); | 
|  | EXPECT_EQ(kVideoFrameDelta, payload.frame_type); | 
|  | EXPECT_EQ(kH264SingleNalu, h264.packetization_type); | 
|  | EXPECT_EQ(kSei, h264.nalu_type); | 
|  | ASSERT_EQ(1u, h264.nalus_length); | 
|  | EXPECT_EQ(static_cast<H264::NaluType>(kSei), h264.nalus[0].type); | 
|  | EXPECT_EQ(-1, h264.nalus[0].sps_id); | 
|  | EXPECT_EQ(-1, h264.nalus[0].pps_id); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace webrtc |