| /* | 
 |  *  Copyright 2015 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "webrtc/base/bitbuffer.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <limits> | 
 |  | 
 | #include "webrtc/base/checks.h" | 
 |  | 
 | namespace { | 
 |  | 
 | // Returns the lowest (right-most) |bit_count| bits in |byte|. | 
 | uint8_t LowestBits(uint8_t byte, size_t bit_count) { | 
 |   RTC_DCHECK_LE(bit_count, 8u); | 
 |   return byte & ((1 << bit_count) - 1); | 
 | } | 
 |  | 
 | // Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the | 
 | // lowest bits (to the right). | 
 | uint8_t HighestBits(uint8_t byte, size_t bit_count) { | 
 |   RTC_DCHECK_LE(bit_count, 8u); | 
 |   uint8_t shift = 8 - static_cast<uint8_t>(bit_count); | 
 |   uint8_t mask = 0xFF << shift; | 
 |   return (byte & mask) >> shift; | 
 | } | 
 |  | 
 | // Returns the highest byte of |val| in a uint8_t. | 
 | uint8_t HighestByte(uint64_t val) { | 
 |   return static_cast<uint8_t>(val >> 56); | 
 | } | 
 |  | 
 | // Returns the result of writing partial data from |source|, of | 
 | // |source_bit_count| size in the highest bits, to |target| at | 
 | // |target_bit_offset| from the highest bit. | 
 | uint8_t WritePartialByte(uint8_t source, | 
 |                          size_t source_bit_count, | 
 |                          uint8_t target, | 
 |                          size_t target_bit_offset) { | 
 |   RTC_DCHECK(target_bit_offset < 8); | 
 |   RTC_DCHECK(source_bit_count < 9); | 
 |   RTC_DCHECK(source_bit_count <= (8 - target_bit_offset)); | 
 |   // Generate a mask for just the bits we're going to overwrite, so: | 
 |   uint8_t mask = | 
 |       // The number of bits we want, in the most significant bits... | 
 |       static_cast<uint8_t>(0xFF << (8 - source_bit_count)) | 
 |       // ...shifted over to the target offset from the most signficant bit. | 
 |       >> target_bit_offset; | 
 |  | 
 |   // We want the target, with the bits we'll overwrite masked off, or'ed with | 
 |   // the bits from the source we want. | 
 |   return (target & ~mask) | (source >> target_bit_offset); | 
 | } | 
 |  | 
 | // Counts the number of bits used in the binary representation of val. | 
 | size_t CountBits(uint64_t val) { | 
 |   size_t bit_count = 0; | 
 |   while (val != 0) { | 
 |     bit_count++; | 
 |     val >>= 1; | 
 |   } | 
 |   return bit_count; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | namespace rtc { | 
 |  | 
 | BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count) | 
 |     : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() { | 
 |   RTC_DCHECK(static_cast<uint64_t>(byte_count_) <= | 
 |              std::numeric_limits<uint32_t>::max()); | 
 | } | 
 |  | 
 | uint64_t BitBuffer::RemainingBitCount() const { | 
 |   return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadUInt8(uint8_t* val) { | 
 |   uint32_t bit_val; | 
 |   if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) { | 
 |     return false; | 
 |   } | 
 |   RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max()); | 
 |   *val = static_cast<uint8_t>(bit_val); | 
 |   return true; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadUInt16(uint16_t* val) { | 
 |   uint32_t bit_val; | 
 |   if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) { | 
 |     return false; | 
 |   } | 
 |   RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max()); | 
 |   *val = static_cast<uint16_t>(bit_val); | 
 |   return true; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadUInt32(uint32_t* val) { | 
 |   return ReadBits(val, sizeof(uint32_t) * 8); | 
 | } | 
 |  | 
 | bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) { | 
 |   if (!val || bit_count > RemainingBitCount() || bit_count > 32) { | 
 |     return false; | 
 |   } | 
 |   const uint8_t* bytes = bytes_ + byte_offset_; | 
 |   size_t remaining_bits_in_current_byte = 8 - bit_offset_; | 
 |   uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); | 
 |   // If we're reading fewer bits than what's left in the current byte, just | 
 |   // return the portion of this byte that we need. | 
 |   if (bit_count < remaining_bits_in_current_byte) { | 
 |     *val = HighestBits(bits, bit_offset_ + bit_count); | 
 |     return true; | 
 |   } | 
 |   // Otherwise, subtract what we've read from the bit count and read as many | 
 |   // full bytes as we can into bits. | 
 |   bit_count -= remaining_bits_in_current_byte; | 
 |   while (bit_count >= 8) { | 
 |     bits = (bits << 8) | *bytes++; | 
 |     bit_count -= 8; | 
 |   } | 
 |   // Whatever we have left is smaller than a byte, so grab just the bits we need | 
 |   // and shift them into the lowest bits. | 
 |   if (bit_count > 0) { | 
 |     bits <<= bit_count; | 
 |     bits |= HighestBits(*bytes, bit_count); | 
 |   } | 
 |   *val = bits; | 
 |   return true; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) { | 
 |   return PeekBits(val, bit_count) && ConsumeBits(bit_count); | 
 | } | 
 |  | 
 | bool BitBuffer::ConsumeBytes(size_t byte_count) { | 
 |   return ConsumeBits(byte_count * 8); | 
 | } | 
 |  | 
 | bool BitBuffer::ConsumeBits(size_t bit_count) { | 
 |   if (bit_count > RemainingBitCount()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   byte_offset_ += (bit_offset_ + bit_count) / 8; | 
 |   bit_offset_ = (bit_offset_ + bit_count) % 8; | 
 |   return true; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadExponentialGolomb(uint32_t* val) { | 
 |   if (!val) { | 
 |     return false; | 
 |   } | 
 |   // Store off the current byte/bit offset, in case we want to restore them due | 
 |   // to a failed parse. | 
 |   size_t original_byte_offset = byte_offset_; | 
 |   size_t original_bit_offset = bit_offset_; | 
 |  | 
 |   // Count the number of leading 0 bits by peeking/consuming them one at a time. | 
 |   size_t zero_bit_count = 0; | 
 |   uint32_t peeked_bit; | 
 |   while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) { | 
 |     zero_bit_count++; | 
 |     ConsumeBits(1); | 
 |   } | 
 |  | 
 |   // We should either be at the end of the stream, or the next bit should be 1. | 
 |   RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1); | 
 |  | 
 |   // The bit count of the value is the number of zeros + 1. Make sure that many | 
 |   // bits fits in a uint32_t and that we have enough bits left for it, and then | 
 |   // read the value. | 
 |   size_t value_bit_count = zero_bit_count + 1; | 
 |   if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) { | 
 |     RTC_CHECK(Seek(original_byte_offset, original_bit_offset)); | 
 |     return false; | 
 |   } | 
 |   *val -= 1; | 
 |   return true; | 
 | } | 
 |  | 
 | bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) { | 
 |   uint32_t unsigned_val; | 
 |   if (!ReadExponentialGolomb(&unsigned_val)) { | 
 |     return false; | 
 |   } | 
 |   if ((unsigned_val & 1) == 0) { | 
 |     *val = -static_cast<int32_t>(unsigned_val / 2); | 
 |   } else { | 
 |     *val = (unsigned_val + 1) / 2; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void BitBuffer::GetCurrentOffset( | 
 |     size_t* out_byte_offset, size_t* out_bit_offset) { | 
 |   RTC_CHECK(out_byte_offset != NULL); | 
 |   RTC_CHECK(out_bit_offset != NULL); | 
 |   *out_byte_offset = byte_offset_; | 
 |   *out_bit_offset = bit_offset_; | 
 | } | 
 |  | 
 | bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) { | 
 |   if (byte_offset > byte_count_ || bit_offset > 7 || | 
 |       (byte_offset == byte_count_ && bit_offset > 0)) { | 
 |     return false; | 
 |   } | 
 |   byte_offset_ = byte_offset; | 
 |   bit_offset_ = bit_offset; | 
 |   return true; | 
 | } | 
 |  | 
 | BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count) | 
 |     : BitBuffer(bytes, byte_count), writable_bytes_(bytes) { | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteUInt8(uint8_t val) { | 
 |   return WriteBits(val, sizeof(uint8_t) * 8); | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteUInt16(uint16_t val) { | 
 |   return WriteBits(val, sizeof(uint16_t) * 8); | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteUInt32(uint32_t val) { | 
 |   return WriteBits(val, sizeof(uint32_t) * 8); | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) { | 
 |   if (bit_count > RemainingBitCount()) { | 
 |     return false; | 
 |   } | 
 |   size_t total_bits = bit_count; | 
 |  | 
 |   // For simplicity, push the bits we want to read from val to the highest bits. | 
 |   val <<= (sizeof(uint64_t) * 8 - bit_count); | 
 |  | 
 |   uint8_t* bytes = writable_bytes_ + byte_offset_; | 
 |  | 
 |   // The first byte is relatively special; the bit offset to write to may put us | 
 |   // in the middle of the byte, and the total bit count to write may require we | 
 |   // save the bits at the end of the byte. | 
 |   size_t remaining_bits_in_current_byte = 8 - bit_offset_; | 
 |   size_t bits_in_first_byte = | 
 |       std::min(bit_count, remaining_bits_in_current_byte); | 
 |   *bytes = WritePartialByte( | 
 |       HighestByte(val), bits_in_first_byte, *bytes, bit_offset_); | 
 |   if (bit_count <= remaining_bits_in_current_byte) { | 
 |     // Nothing left to write, so quit early. | 
 |     return ConsumeBits(total_bits); | 
 |   } | 
 |  | 
 |   // Subtract what we've written from the bit count, shift it off the value, and | 
 |   // write the remaining full bytes. | 
 |   val <<= bits_in_first_byte; | 
 |   bytes++; | 
 |   bit_count -= bits_in_first_byte; | 
 |   while (bit_count >= 8) { | 
 |     *bytes++ = HighestByte(val); | 
 |     val <<= 8; | 
 |     bit_count -= 8; | 
 |   } | 
 |  | 
 |   // Last byte may also be partial, so write the remaining bits from the top of | 
 |   // val. | 
 |   if (bit_count > 0) { | 
 |     *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0); | 
 |   } | 
 |  | 
 |   // All done! Consume the bits we've written. | 
 |   return ConsumeBits(total_bits); | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) { | 
 |   // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t | 
 |   // when encoded, so don't support writing it either. | 
 |   if (val == std::numeric_limits<uint32_t>::max()) { | 
 |     return false; | 
 |   } | 
 |   uint64_t val_to_encode = static_cast<uint64_t>(val) + 1; | 
 |  | 
 |   // We need to write CountBits(val+1) 0s and then val+1. Since val (as a | 
 |   // uint64_t) has leading zeros, we can just write the total golomb encoded | 
 |   // size worth of bits, knowing the value will appear last. | 
 |   return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1); | 
 | } | 
 |  | 
 | bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) { | 
 |   if (val == 0) { | 
 |     return WriteExponentialGolomb(0); | 
 |   } else if (val > 0) { | 
 |     uint32_t signed_val = val; | 
 |     return WriteExponentialGolomb((signed_val * 2) - 1); | 
 |   } else { | 
 |     if (val == std::numeric_limits<int32_t>::min()) | 
 |       return false;  // Not supported, would cause overflow. | 
 |     uint32_t signed_val = -val; | 
 |     return WriteExponentialGolomb(signed_val * 2); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace rtc |