|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "webrtc/p2p/base/basicpacketsocketfactory.h" | 
|  | #include "webrtc/p2p/base/relayport.h" | 
|  | #include "webrtc/p2p/base/stunport.h" | 
|  | #include "webrtc/p2p/base/tcpport.h" | 
|  | #include "webrtc/p2p/base/testrelayserver.h" | 
|  | #include "webrtc/p2p/base/teststunserver.h" | 
|  | #include "webrtc/p2p/base/testturnserver.h" | 
|  | #include "webrtc/p2p/base/transport.h" | 
|  | #include "webrtc/p2p/base/turnport.h" | 
|  | #include "webrtc/base/arraysize.h" | 
|  | #include "webrtc/base/buffer.h" | 
|  | #include "webrtc/base/crc32.h" | 
|  | #include "webrtc/base/gunit.h" | 
|  | #include "webrtc/base/helpers.h" | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/natserver.h" | 
|  | #include "webrtc/base/natsocketfactory.h" | 
|  | #include "webrtc/base/physicalsocketserver.h" | 
|  | #include "webrtc/base/socketaddress.h" | 
|  | #include "webrtc/base/ssladapter.h" | 
|  | #include "webrtc/base/stringutils.h" | 
|  | #include "webrtc/base/thread.h" | 
|  | #include "webrtc/base/virtualsocketserver.h" | 
|  |  | 
|  | using rtc::AsyncPacketSocket; | 
|  | using rtc::Buffer; | 
|  | using rtc::ByteBufferReader; | 
|  | using rtc::ByteBufferWriter; | 
|  | using rtc::NATType; | 
|  | using rtc::NAT_OPEN_CONE; | 
|  | using rtc::NAT_ADDR_RESTRICTED; | 
|  | using rtc::NAT_PORT_RESTRICTED; | 
|  | using rtc::NAT_SYMMETRIC; | 
|  | using rtc::PacketSocketFactory; | 
|  | using rtc::Socket; | 
|  | using rtc::SocketAddress; | 
|  | using namespace cricket; | 
|  |  | 
|  | static const int kTimeout = 1000; | 
|  | static const SocketAddress kLocalAddr1("192.168.1.2", 0); | 
|  | static const SocketAddress kLocalAddr2("192.168.1.3", 0); | 
|  | static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); | 
|  | static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT); | 
|  | static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT); | 
|  | static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000); | 
|  | static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001); | 
|  | static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002); | 
|  | static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003); | 
|  | static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004); | 
|  | static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005); | 
|  | static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT); | 
|  | static const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010); | 
|  | static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0); | 
|  | static const RelayCredentials kRelayCredentials("test", "test"); | 
|  |  | 
|  | // TODO: Update these when RFC5245 is completely supported. | 
|  | // Magic value of 30 is from RFC3484, for IPv4 addresses. | 
|  | static const uint32_t kDefaultPrflxPriority = | 
|  | ICE_TYPE_PREFERENCE_PRFLX << 24 | 30 << 8 | | 
|  | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | static const int kTiebreaker1 = 11111; | 
|  | static const int kTiebreaker2 = 22222; | 
|  |  | 
|  | static const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; | 
|  |  | 
|  | static const int kGturnUserNameLength = 16; | 
|  |  | 
|  | static Candidate GetCandidate(Port* port) { | 
|  | assert(port->Candidates().size() >= 1); | 
|  | return port->Candidates()[0]; | 
|  | } | 
|  |  | 
|  | static SocketAddress GetAddress(Port* port) { | 
|  | return GetCandidate(port).address(); | 
|  | } | 
|  |  | 
|  | static IceMessage* CopyStunMessage(const IceMessage* src) { | 
|  | IceMessage* dst = new IceMessage(); | 
|  | ByteBufferWriter buf; | 
|  | src->Write(&buf); | 
|  | ByteBufferReader read_buf(buf); | 
|  | dst->Read(&read_buf); | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | static bool WriteStunMessage(const StunMessage* msg, ByteBufferWriter* buf) { | 
|  | buf->Resize(0);  // clear out any existing buffer contents | 
|  | return msg->Write(buf); | 
|  | } | 
|  |  | 
|  | // Stub port class for testing STUN generation and processing. | 
|  | class TestPort : public Port { | 
|  | public: | 
|  | TestPort(rtc::Thread* thread, | 
|  | const std::string& type, | 
|  | rtc::PacketSocketFactory* factory, | 
|  | rtc::Network* network, | 
|  | const rtc::IPAddress& ip, | 
|  | uint16_t min_port, | 
|  | uint16_t max_port, | 
|  | const std::string& username_fragment, | 
|  | const std::string& password) | 
|  | : Port(thread, | 
|  | type, | 
|  | factory, | 
|  | network, | 
|  | ip, | 
|  | min_port, | 
|  | max_port, | 
|  | username_fragment, | 
|  | password) {} | 
|  | ~TestPort() {} | 
|  |  | 
|  | // Expose GetStunMessage so that we can test it. | 
|  | using cricket::Port::GetStunMessage; | 
|  |  | 
|  | // The last StunMessage that was sent on this Port. | 
|  | // TODO: Make these const; requires changes to SendXXXXResponse. | 
|  | Buffer* last_stun_buf() { return last_stun_buf_.get(); } | 
|  | IceMessage* last_stun_msg() { return last_stun_msg_.get(); } | 
|  | int last_stun_error_code() { | 
|  | int code = 0; | 
|  | if (last_stun_msg_) { | 
|  | const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode(); | 
|  | if (error_attr) { | 
|  | code = error_attr->code(); | 
|  | } | 
|  | } | 
|  | return code; | 
|  | } | 
|  |  | 
|  | virtual void PrepareAddress() { | 
|  | rtc::SocketAddress addr(ip(), min_port()); | 
|  | AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), | 
|  | ICE_TYPE_PREFERENCE_HOST, 0, true); | 
|  | } | 
|  |  | 
|  | virtual bool SupportsProtocol(const std::string& protocol) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Exposed for testing candidate building. | 
|  | void AddCandidateAddress(const rtc::SocketAddress& addr) { | 
|  | AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), | 
|  | type_preference_, 0, false); | 
|  | } | 
|  | void AddCandidateAddress(const rtc::SocketAddress& addr, | 
|  | const rtc::SocketAddress& base_address, | 
|  | const std::string& type, | 
|  | int type_preference, | 
|  | bool final) { | 
|  | AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type, | 
|  | type_preference, 0, final); | 
|  | } | 
|  |  | 
|  | virtual Connection* CreateConnection(const Candidate& remote_candidate, | 
|  | CandidateOrigin origin) { | 
|  | Connection* conn = new ProxyConnection(this, 0, remote_candidate); | 
|  | AddOrReplaceConnection(conn); | 
|  | // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute | 
|  | // in STUN binding requests. | 
|  | conn->set_use_candidate_attr(true); | 
|  | return conn; | 
|  | } | 
|  | virtual int SendTo( | 
|  | const void* data, size_t size, const rtc::SocketAddress& addr, | 
|  | const rtc::PacketOptions& options, bool payload) { | 
|  | if (!payload) { | 
|  | IceMessage* msg = new IceMessage; | 
|  | Buffer* buf = new Buffer(static_cast<const char*>(data), size); | 
|  | ByteBufferReader read_buf(*buf); | 
|  | if (!msg->Read(&read_buf)) { | 
|  | delete msg; | 
|  | delete buf; | 
|  | return -1; | 
|  | } | 
|  | last_stun_buf_.reset(buf); | 
|  | last_stun_msg_.reset(msg); | 
|  | } | 
|  | return static_cast<int>(size); | 
|  | } | 
|  | virtual int SetOption(rtc::Socket::Option opt, int value) { | 
|  | return 0; | 
|  | } | 
|  | virtual int GetOption(rtc::Socket::Option opt, int* value) { | 
|  | return -1; | 
|  | } | 
|  | virtual int GetError() { | 
|  | return 0; | 
|  | } | 
|  | void Reset() { | 
|  | last_stun_buf_.reset(); | 
|  | last_stun_msg_.reset(); | 
|  | } | 
|  | void set_type_preference(int type_preference) { | 
|  | type_preference_ = type_preference; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void OnSentPacket(rtc::AsyncPacketSocket* socket, | 
|  | const rtc::SentPacket& sent_packet) { | 
|  | PortInterface::SignalSentPacket(sent_packet); | 
|  | } | 
|  | std::unique_ptr<Buffer> last_stun_buf_; | 
|  | std::unique_ptr<IceMessage> last_stun_msg_; | 
|  | int type_preference_ = 0; | 
|  | }; | 
|  |  | 
|  | class TestChannel : public sigslot::has_slots<> { | 
|  | public: | 
|  | // Takes ownership of |p1| (but not |p2|). | 
|  | TestChannel(Port* p1) | 
|  | : ice_mode_(ICEMODE_FULL), | 
|  | port_(p1), | 
|  | complete_count_(0), | 
|  | conn_(NULL), | 
|  | remote_request_(), | 
|  | nominated_(false) { | 
|  | port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete); | 
|  | port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress); | 
|  | port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed); | 
|  | } | 
|  |  | 
|  | int complete_count() { return complete_count_; } | 
|  | Connection* conn() { return conn_; } | 
|  | const SocketAddress& remote_address() { return remote_address_; } | 
|  | const std::string remote_fragment() { return remote_frag_; } | 
|  |  | 
|  | void Start() { port_->PrepareAddress(); } | 
|  | void CreateConnection(const Candidate& remote_candidate) { | 
|  | conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE); | 
|  | IceMode remote_ice_mode = | 
|  | (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL; | 
|  | conn_->set_remote_ice_mode(remote_ice_mode); | 
|  | conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL); | 
|  | conn_->SignalStateChange.connect( | 
|  | this, &TestChannel::OnConnectionStateChange); | 
|  | conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); | 
|  | conn_->SignalReadyToSend.connect(this, | 
|  | &TestChannel::OnConnectionReadyToSend); | 
|  | connection_ready_to_send_ = false; | 
|  | } | 
|  | void OnConnectionStateChange(Connection* conn) { | 
|  | if (conn->write_state() == Connection::STATE_WRITABLE) { | 
|  | conn->set_use_candidate_attr(true); | 
|  | nominated_ = true; | 
|  | } | 
|  | } | 
|  | void AcceptConnection(const Candidate& remote_candidate) { | 
|  | ASSERT_TRUE(remote_request_.get() != NULL); | 
|  | Candidate c = remote_candidate; | 
|  | c.set_address(remote_address_); | 
|  | conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE); | 
|  | conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); | 
|  | port_->SendBindingResponse(remote_request_.get(), remote_address_); | 
|  | remote_request_.reset(); | 
|  | } | 
|  | void Ping() { | 
|  | Ping(0); | 
|  | } | 
|  | void Ping(int64_t now) { conn_->Ping(now); } | 
|  | void Stop() { | 
|  | if (conn_) { | 
|  | conn_->Destroy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OnPortComplete(Port* port) { | 
|  | complete_count_++; | 
|  | } | 
|  | void SetIceMode(IceMode ice_mode) { | 
|  | ice_mode_ = ice_mode; | 
|  | } | 
|  |  | 
|  | int SendData(const char* data, size_t len) { | 
|  | rtc::PacketOptions options; | 
|  | return conn_->Send(data, len, options); | 
|  | } | 
|  |  | 
|  | void OnUnknownAddress(PortInterface* port, const SocketAddress& addr, | 
|  | ProtocolType proto, | 
|  | IceMessage* msg, const std::string& rf, | 
|  | bool /*port_muxed*/) { | 
|  | ASSERT_EQ(port_.get(), port); | 
|  | if (!remote_address_.IsNil()) { | 
|  | ASSERT_EQ(remote_address_, addr); | 
|  | } | 
|  | const cricket::StunUInt32Attribute* priority_attr = | 
|  | msg->GetUInt32(STUN_ATTR_PRIORITY); | 
|  | const cricket::StunByteStringAttribute* mi_attr = | 
|  | msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); | 
|  | const cricket::StunUInt32Attribute* fingerprint_attr = | 
|  | msg->GetUInt32(STUN_ATTR_FINGERPRINT); | 
|  | EXPECT_TRUE(priority_attr != NULL); | 
|  | EXPECT_TRUE(mi_attr != NULL); | 
|  | EXPECT_TRUE(fingerprint_attr != NULL); | 
|  | remote_address_ = addr; | 
|  | remote_request_.reset(CopyStunMessage(msg)); | 
|  | remote_frag_ = rf; | 
|  | } | 
|  |  | 
|  | void OnDestroyed(Connection* conn) { | 
|  | ASSERT_EQ(conn_, conn); | 
|  | LOG(INFO) << "OnDestroy connection " << conn << " deleted"; | 
|  | conn_ = NULL; | 
|  | // When the connection is destroyed, also clear these fields so future | 
|  | // connections are possible. | 
|  | remote_request_.reset(); | 
|  | remote_address_.Clear(); | 
|  | } | 
|  |  | 
|  | void OnSrcPortDestroyed(PortInterface* port) { | 
|  | Port* destroyed_src = port_.release(); | 
|  | ASSERT_EQ(destroyed_src, port); | 
|  | } | 
|  |  | 
|  | Port* port() { return port_.get(); } | 
|  |  | 
|  | bool nominated() const { return nominated_; } | 
|  |  | 
|  | void set_connection_ready_to_send(bool ready) { | 
|  | connection_ready_to_send_ = ready; | 
|  | } | 
|  | bool connection_ready_to_send() const { | 
|  | return connection_ready_to_send_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // ReadyToSend will only issue after a Connection recovers from EWOULDBLOCK. | 
|  | void OnConnectionReadyToSend(Connection* conn) { | 
|  | ASSERT_EQ(conn, conn_); | 
|  | connection_ready_to_send_ = true; | 
|  | } | 
|  |  | 
|  | IceMode ice_mode_; | 
|  | std::unique_ptr<Port> port_; | 
|  |  | 
|  | int complete_count_; | 
|  | Connection* conn_; | 
|  | SocketAddress remote_address_; | 
|  | std::unique_ptr<StunMessage> remote_request_; | 
|  | std::string remote_frag_; | 
|  | bool nominated_; | 
|  | bool connection_ready_to_send_ = false; | 
|  | }; | 
|  |  | 
|  | class PortTest : public testing::Test, public sigslot::has_slots<> { | 
|  | public: | 
|  | PortTest() | 
|  | : main_(rtc::Thread::Current()), | 
|  | pss_(new rtc::PhysicalSocketServer), | 
|  | ss_(new rtc::VirtualSocketServer(pss_.get())), | 
|  | ss_scope_(ss_.get()), | 
|  | network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32), | 
|  | socket_factory_(rtc::Thread::Current()), | 
|  | nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()), | 
|  | nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()), | 
|  | nat_socket_factory1_(&nat_factory1_), | 
|  | nat_socket_factory2_(&nat_factory2_), | 
|  | stun_server_(TestStunServer::Create(main_, kStunAddr)), | 
|  | turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr), | 
|  | relay_server_(main_, | 
|  | kRelayUdpIntAddr, | 
|  | kRelayUdpExtAddr, | 
|  | kRelayTcpIntAddr, | 
|  | kRelayTcpExtAddr, | 
|  | kRelaySslTcpIntAddr, | 
|  | kRelaySslTcpExtAddr), | 
|  | username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)), | 
|  | password_(rtc::CreateRandomString(ICE_PWD_LENGTH)), | 
|  | role_conflict_(false), | 
|  | destroyed_(false) { | 
|  | network_.AddIP(rtc::IPAddress(INADDR_ANY)); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | void TestLocalToLocal() { | 
|  | Port* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("udp", port1, "udp", port2, true, true, true, true); | 
|  | } | 
|  | void TestLocalToStun(NATType ntype) { | 
|  | Port* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | nat_server2_.reset(CreateNatServer(kNatAddr2, ntype)); | 
|  | Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("udp", port1, StunName(ntype), port2, | 
|  | ntype == NAT_OPEN_CONE, true, | 
|  | ntype != NAT_SYMMETRIC, true); | 
|  | } | 
|  | void TestLocalToRelay(RelayType rtype, ProtocolType proto) { | 
|  | Port* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("udp", port1, RelayName(rtype, proto), port2, | 
|  | rtype == RELAY_GTURN, true, true, true); | 
|  | } | 
|  | void TestStunToLocal(NATType ntype) { | 
|  | nat_server1_.reset(CreateNatServer(kNatAddr1, ntype)); | 
|  | Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity(StunName(ntype), port1, "udp", port2, | 
|  | true, ntype != NAT_SYMMETRIC, true, true); | 
|  | } | 
|  | void TestStunToStun(NATType ntype1, NATType ntype2) { | 
|  | nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1)); | 
|  | Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2)); | 
|  | Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2, | 
|  | ntype2 == NAT_OPEN_CONE, | 
|  | ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC, | 
|  | ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC)); | 
|  | } | 
|  | void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) { | 
|  | nat_server1_.reset(CreateNatServer(kNatAddr1, ntype)); | 
|  | Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2, | 
|  | rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true); | 
|  | } | 
|  | void TestTcpToTcp() { | 
|  | Port* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateTcpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true); | 
|  | } | 
|  | void TestTcpToRelay(RelayType rtype, ProtocolType proto) { | 
|  | Port* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("tcp", port1, RelayName(rtype, proto), port2, | 
|  | rtype == RELAY_GTURN, false, true, true); | 
|  | } | 
|  | void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) { | 
|  | Port* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2, | 
|  | rtype == RELAY_GTURN, false, true, true); | 
|  | } | 
|  | // helpers for above functions | 
|  | UDPPort* CreateUdpPort(const SocketAddress& addr) { | 
|  | return CreateUdpPort(addr, &socket_factory_); | 
|  | } | 
|  | UDPPort* CreateUdpPort(const SocketAddress& addr, | 
|  | PacketSocketFactory* socket_factory) { | 
|  | return UDPPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0, | 
|  | 0, username_, password_, std::string(), true); | 
|  | } | 
|  | TCPPort* CreateTcpPort(const SocketAddress& addr) { | 
|  | return CreateTcpPort(addr, &socket_factory_); | 
|  | } | 
|  | TCPPort* CreateTcpPort(const SocketAddress& addr, | 
|  | PacketSocketFactory* socket_factory) { | 
|  | return TCPPort::Create(main_, socket_factory, &network_, | 
|  | addr.ipaddr(), 0, 0, username_, password_, | 
|  | true); | 
|  | } | 
|  | StunPort* CreateStunPort(const SocketAddress& addr, | 
|  | rtc::PacketSocketFactory* factory) { | 
|  | ServerAddresses stun_servers; | 
|  | stun_servers.insert(kStunAddr); | 
|  | return StunPort::Create(main_, factory, &network_, | 
|  | addr.ipaddr(), 0, 0, | 
|  | username_, password_, stun_servers, | 
|  | std::string()); | 
|  | } | 
|  | Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype, | 
|  | ProtocolType int_proto, ProtocolType ext_proto) { | 
|  | if (rtype == RELAY_TURN) { | 
|  | return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto); | 
|  | } else { | 
|  | return CreateGturnPort(addr, int_proto, ext_proto); | 
|  | } | 
|  | } | 
|  | TurnPort* CreateTurnPort(const SocketAddress& addr, | 
|  | PacketSocketFactory* socket_factory, | 
|  | ProtocolType int_proto, ProtocolType ext_proto) { | 
|  | SocketAddress server_addr = | 
|  | int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr; | 
|  | return CreateTurnPort(addr, socket_factory, int_proto, ext_proto, | 
|  | server_addr); | 
|  | } | 
|  | TurnPort* CreateTurnPort(const SocketAddress& addr, | 
|  | PacketSocketFactory* socket_factory, | 
|  | ProtocolType int_proto, ProtocolType ext_proto, | 
|  | const rtc::SocketAddress& server_addr) { | 
|  | return TurnPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0, | 
|  | 0, username_, password_, | 
|  | ProtocolAddress(server_addr, int_proto), | 
|  | kRelayCredentials, 0, std::string()); | 
|  | } | 
|  | RelayPort* CreateGturnPort(const SocketAddress& addr, | 
|  | ProtocolType int_proto, ProtocolType ext_proto) { | 
|  | RelayPort* port = CreateGturnPort(addr); | 
|  | SocketAddress addrs[] = | 
|  | { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr }; | 
|  | port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto)); | 
|  | return port; | 
|  | } | 
|  | RelayPort* CreateGturnPort(const SocketAddress& addr) { | 
|  | // TODO(pthatcher):  Remove GTURN. | 
|  | // Generate a username with length of 16 for Gturn only. | 
|  | std::string username = rtc::CreateRandomString(kGturnUserNameLength); | 
|  | return RelayPort::Create(main_, &socket_factory_, &network_, addr.ipaddr(), | 
|  | 0, 0, username, password_); | 
|  | // TODO: Add an external address for ext_proto, so that the | 
|  | // other side can connect to this port using a non-UDP protocol. | 
|  | } | 
|  | rtc::NATServer* CreateNatServer(const SocketAddress& addr, | 
|  | rtc::NATType type) { | 
|  | return new rtc::NATServer(type, ss_.get(), addr, addr, ss_.get(), addr); | 
|  | } | 
|  | static const char* StunName(NATType type) { | 
|  | switch (type) { | 
|  | case NAT_OPEN_CONE:       return "stun(open cone)"; | 
|  | case NAT_ADDR_RESTRICTED: return "stun(addr restricted)"; | 
|  | case NAT_PORT_RESTRICTED: return "stun(port restricted)"; | 
|  | case NAT_SYMMETRIC:       return "stun(symmetric)"; | 
|  | default:                  return "stun(?)"; | 
|  | } | 
|  | } | 
|  | static const char* RelayName(RelayType type, ProtocolType proto) { | 
|  | if (type == RELAY_TURN) { | 
|  | switch (proto) { | 
|  | case PROTO_UDP:           return "turn(udp)"; | 
|  | case PROTO_TCP:           return "turn(tcp)"; | 
|  | case PROTO_SSLTCP:        return "turn(ssltcp)"; | 
|  | default:                  return "turn(?)"; | 
|  | } | 
|  | } else { | 
|  | switch (proto) { | 
|  | case PROTO_UDP:           return "gturn(udp)"; | 
|  | case PROTO_TCP:           return "gturn(tcp)"; | 
|  | case PROTO_SSLTCP:        return "gturn(ssltcp)"; | 
|  | default:                  return "gturn(?)"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SetNetworkType(rtc::AdapterType adapter_type) { | 
|  | network_.set_type(adapter_type); | 
|  | } | 
|  |  | 
|  | void TestCrossFamilyPorts(int type); | 
|  |  | 
|  | void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2); | 
|  |  | 
|  | // This does all the work and then deletes |port1| and |port2|. | 
|  | void TestConnectivity(const char* name1, Port* port1, | 
|  | const char* name2, Port* port2, | 
|  | bool accept, bool same_addr1, | 
|  | bool same_addr2, bool possible); | 
|  |  | 
|  | // This connects the provided channels which have already started.  |ch1| | 
|  | // should have its Connection created (either through CreateConnection() or | 
|  | // TCP reconnecting mechanism before entering this function. | 
|  | void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) { | 
|  | ASSERT_TRUE(ch1->conn()); | 
|  | EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout);  // for TCP connect | 
|  | ch1->Ping(); | 
|  | WAIT(!ch2->remote_address().IsNil(), kTimeout); | 
|  |  | 
|  | // Send a ping from dst to src. | 
|  | ch2->AcceptConnection(GetCandidate(ch1->port())); | 
|  | ch2->Ping(); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(), | 
|  | kTimeout); | 
|  | } | 
|  |  | 
|  | // This connects and disconnects the provided channels in the same sequence as | 
|  | // TestConnectivity with all options set to |true|.  It does not delete either | 
|  | // channel. | 
|  | void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) { | 
|  | // Acquire addresses. | 
|  | ch1->Start(); | 
|  | ch2->Start(); | 
|  |  | 
|  | ch1->CreateConnection(GetCandidate(ch2->port())); | 
|  | ConnectStartedChannels(ch1, ch2); | 
|  |  | 
|  | // Destroy the connections. | 
|  | ch1->Stop(); | 
|  | ch2->Stop(); | 
|  | } | 
|  |  | 
|  | // This disconnects both end's Connection and make sure ch2 ready for new | 
|  | // connection. | 
|  | void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) { | 
|  | TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn()); | 
|  | TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn()); | 
|  | ASSERT_TRUE( | 
|  | ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(), | 
|  | tcp_conn2->socket()->GetLocalAddress())); | 
|  |  | 
|  | // Wait for both OnClose are delivered. | 
|  | EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kTimeout); | 
|  | EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kTimeout); | 
|  |  | 
|  | // Ensure redundant SignalClose events on TcpConnection won't break tcp | 
|  | // reconnection. Chromium will fire SignalClose for all outstanding IPC | 
|  | // packets during reconnection. | 
|  | tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0); | 
|  | tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0); | 
|  |  | 
|  | // Speed up destroying ch2's connection such that the test is ready to | 
|  | // accept a new connection from ch1 before ch1's connection destroys itself. | 
|  | ch2->conn()->Destroy(); | 
|  | EXPECT_TRUE_WAIT(ch2->conn() == NULL, kTimeout); | 
|  | } | 
|  |  | 
|  | void TestTcpReconnect(bool ping_after_disconnected, | 
|  | bool send_after_disconnected) { | 
|  | Port* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Port* port2 = CreateTcpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  |  | 
|  | port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  | port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | // Set up channels and ensure both ports will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  | EXPECT_EQ(0, ch1.complete_count()); | 
|  | EXPECT_EQ(0, ch2.complete_count()); | 
|  |  | 
|  | ch1.Start(); | 
|  | ch2.Start(); | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  | ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); | 
|  |  | 
|  | // Initial connecting the channel, create connection on channel1. | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | ConnectStartedChannels(&ch1, &ch2); | 
|  |  | 
|  | // Shorten the timeout period. | 
|  | const int kTcpReconnectTimeout = kTimeout; | 
|  | static_cast<TCPConnection*>(ch1.conn()) | 
|  | ->set_reconnection_timeout(kTcpReconnectTimeout); | 
|  | static_cast<TCPConnection*>(ch2.conn()) | 
|  | ->set_reconnection_timeout(kTcpReconnectTimeout); | 
|  |  | 
|  | EXPECT_FALSE(ch1.connection_ready_to_send()); | 
|  | EXPECT_FALSE(ch2.connection_ready_to_send()); | 
|  |  | 
|  | // Once connected, disconnect them. | 
|  | DisconnectTcpTestChannels(&ch1, &ch2); | 
|  |  | 
|  | if (send_after_disconnected || ping_after_disconnected) { | 
|  | if (send_after_disconnected) { | 
|  | // First SendData after disconnect should fail but will trigger | 
|  | // reconnect. | 
|  | EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data)))); | 
|  | } | 
|  |  | 
|  | if (ping_after_disconnected) { | 
|  | // Ping should trigger reconnect. | 
|  | ch1.Ping(); | 
|  | } | 
|  |  | 
|  | // Wait for channel's outgoing TCPConnection connected. | 
|  | EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); | 
|  |  | 
|  | // Verify that we could still connect channels. | 
|  | ConnectStartedChannels(&ch1, &ch2); | 
|  | EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), | 
|  | kTcpReconnectTimeout); | 
|  | // Channel2 is the passive one so a new connection is created during | 
|  | // reconnect. This new connection should never have issued EWOULDBLOCK | 
|  | // hence the connection_ready_to_send() should be false. | 
|  | EXPECT_FALSE(ch2.connection_ready_to_send()); | 
|  | } else { | 
|  | EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE); | 
|  | // Since the reconnection never happens, the connections should have been | 
|  | // destroyed after the timeout. | 
|  | EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kTimeout); | 
|  | EXPECT_TRUE(!ch2.conn()); | 
|  | } | 
|  |  | 
|  | // Tear down and ensure that goes smoothly. | 
|  | ch1.Stop(); | 
|  | ch2.Stop(); | 
|  | EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout); | 
|  | EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout); | 
|  | } | 
|  |  | 
|  | IceMessage* CreateStunMessage(int type) { | 
|  | IceMessage* msg = new IceMessage(); | 
|  | msg->SetType(type); | 
|  | msg->SetTransactionID("TESTTESTTEST"); | 
|  | return msg; | 
|  | } | 
|  | IceMessage* CreateStunMessageWithUsername(int type, | 
|  | const std::string& username) { | 
|  | IceMessage* msg = CreateStunMessage(type); | 
|  | msg->AddAttribute( | 
|  | new StunByteStringAttribute(STUN_ATTR_USERNAME, username)); | 
|  | return msg; | 
|  | } | 
|  | TestPort* CreateTestPort(const rtc::SocketAddress& addr, | 
|  | const std::string& username, | 
|  | const std::string& password) { | 
|  | TestPort* port =  new TestPort(main_, "test", &socket_factory_, &network_, | 
|  | addr.ipaddr(), 0, 0, username, password); | 
|  | port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); | 
|  | return port; | 
|  | } | 
|  | TestPort* CreateTestPort(const rtc::SocketAddress& addr, | 
|  | const std::string& username, | 
|  | const std::string& password, | 
|  | cricket::IceRole role, | 
|  | int tiebreaker) { | 
|  | TestPort* port = CreateTestPort(addr, username, password); | 
|  | port->SetIceRole(role); | 
|  | port->SetIceTiebreaker(tiebreaker); | 
|  | return port; | 
|  | } | 
|  |  | 
|  | void OnRoleConflict(PortInterface* port) { | 
|  | role_conflict_ = true; | 
|  | } | 
|  | bool role_conflict() const { return role_conflict_; } | 
|  |  | 
|  | void ConnectToSignalDestroyed(PortInterface* port) { | 
|  | port->SignalDestroyed.connect(this, &PortTest::OnDestroyed); | 
|  | } | 
|  |  | 
|  | void OnDestroyed(PortInterface* port) { | 
|  | destroyed_ = true; | 
|  | } | 
|  | bool destroyed() const { return destroyed_; } | 
|  |  | 
|  | rtc::BasicPacketSocketFactory* nat_socket_factory1() { | 
|  | return &nat_socket_factory1_; | 
|  | } | 
|  |  | 
|  | rtc::VirtualSocketServer* vss() { return ss_.get(); } | 
|  |  | 
|  | private: | 
|  | rtc::Thread* main_; | 
|  | std::unique_ptr<rtc::PhysicalSocketServer> pss_; | 
|  | std::unique_ptr<rtc::VirtualSocketServer> ss_; | 
|  | rtc::SocketServerScope ss_scope_; | 
|  | rtc::Network network_; | 
|  | rtc::BasicPacketSocketFactory socket_factory_; | 
|  | std::unique_ptr<rtc::NATServer> nat_server1_; | 
|  | std::unique_ptr<rtc::NATServer> nat_server2_; | 
|  | rtc::NATSocketFactory nat_factory1_; | 
|  | rtc::NATSocketFactory nat_factory2_; | 
|  | rtc::BasicPacketSocketFactory nat_socket_factory1_; | 
|  | rtc::BasicPacketSocketFactory nat_socket_factory2_; | 
|  | std::unique_ptr<TestStunServer> stun_server_; | 
|  | TestTurnServer turn_server_; | 
|  | TestRelayServer relay_server_; | 
|  | std::string username_; | 
|  | std::string password_; | 
|  | bool role_conflict_; | 
|  | bool destroyed_; | 
|  | }; | 
|  |  | 
|  | void PortTest::TestConnectivity(const char* name1, Port* port1, | 
|  | const char* name2, Port* port2, | 
|  | bool accept, bool same_addr1, | 
|  | bool same_addr2, bool possible) { | 
|  | LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": "; | 
|  | port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  | port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | // Set up channels and ensure both ports will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  | EXPECT_EQ(0, ch1.complete_count()); | 
|  | EXPECT_EQ(0, ch2.complete_count()); | 
|  |  | 
|  | // Acquire addresses. | 
|  | ch1.Start(); | 
|  | ch2.Start(); | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  | ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); | 
|  |  | 
|  | // Send a ping from src to dst. This may or may not make it. | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | ASSERT_TRUE(ch1.conn() != NULL); | 
|  | EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect | 
|  | ch1.Ping(); | 
|  | WAIT(!ch2.remote_address().IsNil(), kTimeout); | 
|  |  | 
|  | if (accept) { | 
|  | // We are able to send a ping from src to dst. This is the case when | 
|  | // sending to UDP ports and cone NATs. | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  | EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment()); | 
|  |  | 
|  | // Ensure the ping came from the same address used for src. | 
|  | // This is the case unless the source NAT was symmetric. | 
|  | if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1)); | 
|  | EXPECT_TRUE(same_addr2); | 
|  |  | 
|  | // Send a ping from dst to src. | 
|  | ch2.AcceptConnection(GetCandidate(port1)); | 
|  | ASSERT_TRUE(ch2.conn() != NULL); | 
|  | ch2.Ping(); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(), | 
|  | kTimeout); | 
|  | } else { | 
|  | // We can't send a ping from src to dst, so flip it around. This will happen | 
|  | // when the destination NAT is addr/port restricted or symmetric. | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  | EXPECT_TRUE(ch2.remote_address().IsNil()); | 
|  |  | 
|  | // Send a ping from dst to src. Again, this may or may not make it. | 
|  | ch2.CreateConnection(GetCandidate(port1)); | 
|  | ASSERT_TRUE(ch2.conn() != NULL); | 
|  | ch2.Ping(); | 
|  | WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout); | 
|  |  | 
|  | if (same_addr1 && same_addr2) { | 
|  | // The new ping got back to the source. | 
|  | EXPECT_TRUE(ch1.conn()->receiving()); | 
|  | EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); | 
|  |  | 
|  | // First connection may not be writable if the first ping did not get | 
|  | // through.  So we will have to do another. | 
|  | if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) { | 
|  | ch1.Ping(); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), | 
|  | kTimeout); | 
|  | } | 
|  | } else if (!same_addr1 && possible) { | 
|  | // The new ping went to the candidate address, but that address was bad. | 
|  | // This will happen when the source NAT is symmetric. | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  | EXPECT_TRUE(ch2.remote_address().IsNil()); | 
|  |  | 
|  | // However, since we have now sent a ping to the source IP, we should be | 
|  | // able to get a ping from it. This gives us the real source address. | 
|  | ch1.Ping(); | 
|  | EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout); | 
|  | EXPECT_FALSE(ch2.conn()->receiving()); | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  |  | 
|  | // Pick up the actual address and establish the connection. | 
|  | ch2.AcceptConnection(GetCandidate(port1)); | 
|  | ASSERT_TRUE(ch2.conn() != NULL); | 
|  | ch2.Ping(); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(), | 
|  | kTimeout); | 
|  | } else if (!same_addr2 && possible) { | 
|  | // The new ping came in, but from an unexpected address. This will happen | 
|  | // when the destination NAT is symmetric. | 
|  | EXPECT_FALSE(ch1.remote_address().IsNil()); | 
|  | EXPECT_FALSE(ch1.conn()->receiving()); | 
|  |  | 
|  | // Update our address and complete the connection. | 
|  | ch1.AcceptConnection(GetCandidate(port2)); | 
|  | ch1.Ping(); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), | 
|  | kTimeout); | 
|  | } else {  // (!possible) | 
|  | // There should be s no way for the pings to reach each other. Check it. | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  | EXPECT_TRUE(ch2.remote_address().IsNil()); | 
|  | ch1.Ping(); | 
|  | WAIT(!ch2.remote_address().IsNil(), kTimeout); | 
|  | EXPECT_TRUE(ch1.remote_address().IsNil()); | 
|  | EXPECT_TRUE(ch2.remote_address().IsNil()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything should be good, unless we know the situation is impossible. | 
|  | ASSERT_TRUE(ch1.conn() != NULL); | 
|  | ASSERT_TRUE(ch2.conn() != NULL); | 
|  | if (possible) { | 
|  | EXPECT_TRUE(ch1.conn()->receiving()); | 
|  | EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); | 
|  | EXPECT_TRUE(ch2.conn()->receiving()); | 
|  | EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); | 
|  | } else { | 
|  | EXPECT_FALSE(ch1.conn()->receiving()); | 
|  | EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state()); | 
|  | EXPECT_FALSE(ch2.conn()->receiving()); | 
|  | EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state()); | 
|  | } | 
|  |  | 
|  | // Tear down and ensure that goes smoothly. | 
|  | ch1.Stop(); | 
|  | ch2.Stop(); | 
|  | EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout); | 
|  | EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout); | 
|  | } | 
|  |  | 
|  | class FakePacketSocketFactory : public rtc::PacketSocketFactory { | 
|  | public: | 
|  | FakePacketSocketFactory() | 
|  | : next_udp_socket_(NULL), | 
|  | next_server_tcp_socket_(NULL), | 
|  | next_client_tcp_socket_(NULL) { | 
|  | } | 
|  | ~FakePacketSocketFactory() override { } | 
|  |  | 
|  | AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address, | 
|  | uint16_t min_port, | 
|  | uint16_t max_port) override { | 
|  | EXPECT_TRUE(next_udp_socket_ != NULL); | 
|  | AsyncPacketSocket* result = next_udp_socket_; | 
|  | next_udp_socket_ = NULL; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address, | 
|  | uint16_t min_port, | 
|  | uint16_t max_port, | 
|  | int opts) override { | 
|  | EXPECT_TRUE(next_server_tcp_socket_ != NULL); | 
|  | AsyncPacketSocket* result = next_server_tcp_socket_; | 
|  | next_server_tcp_socket_ = NULL; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // TODO: |proxy_info| and |user_agent| should be set | 
|  | // per-factory and not when socket is created. | 
|  | AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address, | 
|  | const SocketAddress& remote_address, | 
|  | const rtc::ProxyInfo& proxy_info, | 
|  | const std::string& user_agent, | 
|  | int opts) override { | 
|  | EXPECT_TRUE(next_client_tcp_socket_ != NULL); | 
|  | AsyncPacketSocket* result = next_client_tcp_socket_; | 
|  | next_client_tcp_socket_ = NULL; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) { | 
|  | next_udp_socket_ = next_udp_socket; | 
|  | } | 
|  | void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) { | 
|  | next_server_tcp_socket_ = next_server_tcp_socket; | 
|  | } | 
|  | void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) { | 
|  | next_client_tcp_socket_ = next_client_tcp_socket; | 
|  | } | 
|  | rtc::AsyncResolverInterface* CreateAsyncResolver() override { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | private: | 
|  | AsyncPacketSocket* next_udp_socket_; | 
|  | AsyncPacketSocket* next_server_tcp_socket_; | 
|  | AsyncPacketSocket* next_client_tcp_socket_; | 
|  | }; | 
|  |  | 
|  | class FakeAsyncPacketSocket : public AsyncPacketSocket { | 
|  | public: | 
|  | // Returns current local address. Address may be set to NULL if the | 
|  | // socket is not bound yet (GetState() returns STATE_BINDING). | 
|  | virtual SocketAddress GetLocalAddress() const { | 
|  | return SocketAddress(); | 
|  | } | 
|  |  | 
|  | // Returns remote address. Returns zeroes if this is not a client TCP socket. | 
|  | virtual SocketAddress GetRemoteAddress() const { | 
|  | return SocketAddress(); | 
|  | } | 
|  |  | 
|  | // Send a packet. | 
|  | virtual int Send(const void *pv, size_t cb, | 
|  | const rtc::PacketOptions& options) { | 
|  | return static_cast<int>(cb); | 
|  | } | 
|  | virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr, | 
|  | const rtc::PacketOptions& options) { | 
|  | return static_cast<int>(cb); | 
|  | } | 
|  | virtual int Close() { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | virtual State GetState() const { return state_; } | 
|  | virtual int GetOption(Socket::Option opt, int* value) { return 0; } | 
|  | virtual int SetOption(Socket::Option opt, int value) { return 0; } | 
|  | virtual int GetError() const { return 0; } | 
|  | virtual void SetError(int error) { } | 
|  |  | 
|  | void set_state(State state) { state_ = state; } | 
|  |  | 
|  | private: | 
|  | State state_; | 
|  | }; | 
|  |  | 
|  | // Local -> XXXX | 
|  | TEST_F(PortTest, TestLocalToLocal) { | 
|  | TestLocalToLocal(); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToConeNat) { | 
|  | TestLocalToStun(NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToARNat) { | 
|  | TestLocalToStun(NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToPRNat) { | 
|  | TestLocalToStun(NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToSymNat) { | 
|  | TestLocalToStun(NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316. | 
|  | TEST_F(PortTest, DISABLED_TestLocalToTurn) { | 
|  | TestLocalToRelay(RELAY_TURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToGturn) { | 
|  | TestLocalToRelay(RELAY_GTURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToTcpGturn) { | 
|  | TestLocalToRelay(RELAY_GTURN, PROTO_TCP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestLocalToSslTcpGturn) { | 
|  | TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP); | 
|  | } | 
|  |  | 
|  | // Cone NAT -> XXXX | 
|  | TEST_F(PortTest, TestConeNatToLocal) { | 
|  | TestStunToLocal(NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToConeNat) { | 
|  | TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToARNat) { | 
|  | TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToPRNat) { | 
|  | TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToSymNat) { | 
|  | TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToTurn) { | 
|  | TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToGturn) { | 
|  | TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestConeNatToTcpGturn) { | 
|  | TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP); | 
|  | } | 
|  |  | 
|  | // Address-restricted NAT -> XXXX | 
|  | TEST_F(PortTest, TestARNatToLocal) { | 
|  | TestStunToLocal(NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToConeNat) { | 
|  | TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToARNat) { | 
|  | TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToPRNat) { | 
|  | TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToSymNat) { | 
|  | TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToTurn) { | 
|  | TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNatToGturn) { | 
|  | TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestARNATNatToTcpGturn) { | 
|  | TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP); | 
|  | } | 
|  |  | 
|  | // Port-restricted NAT -> XXXX | 
|  | TEST_F(PortTest, TestPRNatToLocal) { | 
|  | TestStunToLocal(NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToConeNat) { | 
|  | TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToARNat) { | 
|  | TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToPRNat) { | 
|  | TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToSymNat) { | 
|  | // Will "fail" | 
|  | TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToTurn) { | 
|  | TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToGturn) { | 
|  | TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestPRNatToTcpGturn) { | 
|  | TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP); | 
|  | } | 
|  |  | 
|  | // Symmetric NAT -> XXXX | 
|  | TEST_F(PortTest, TestSymNatToLocal) { | 
|  | TestStunToLocal(NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToConeNat) { | 
|  | TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToARNat) { | 
|  | TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToPRNat) { | 
|  | // Will "fail" | 
|  | TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToSymNat) { | 
|  | // Will "fail" | 
|  | TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToTurn) { | 
|  | TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToGturn) { | 
|  | TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSymNatToTcpGturn) { | 
|  | TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP); | 
|  | } | 
|  |  | 
|  | // Outbound TCP -> XXXX | 
|  | TEST_F(PortTest, TestTcpToTcp) { | 
|  | TestTcpToTcp(); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTcpReconnectOnSendPacket) { | 
|  | TestTcpReconnect(false /* ping */, true /* send */); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTcpReconnectOnPing) { | 
|  | TestTcpReconnect(true /* ping */, false /* send */); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTcpReconnectTimeout) { | 
|  | TestTcpReconnect(false /* ping */, false /* send */); | 
|  | } | 
|  |  | 
|  | // Test when TcpConnection never connects, the OnClose() will be called to | 
|  | // destroy the connection. | 
|  | TEST_F(PortTest, TestTcpNeverConnect) { | 
|  | Port* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | // Set up a channel and ensure the port will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | EXPECT_EQ(0, ch1.complete_count()); | 
|  |  | 
|  | ch1.Start(); | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  |  | 
|  | std::unique_ptr<rtc::AsyncSocket> server( | 
|  | vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM)); | 
|  | // Bind but not listen. | 
|  | EXPECT_EQ(0, server->Bind(kLocalAddr2)); | 
|  |  | 
|  | Candidate c = GetCandidate(port1); | 
|  | c.set_address(server->GetLocalAddress()); | 
|  |  | 
|  | ch1.CreateConnection(c); | 
|  | EXPECT_TRUE(ch1.conn()); | 
|  | EXPECT_TRUE_WAIT(!ch1.conn(), kTimeout);  // for TCP connect | 
|  | } | 
|  |  | 
|  | /* TODO: Enable these once testrelayserver can accept external TCP. | 
|  | TEST_F(PortTest, TestTcpToTcpRelay) { | 
|  | TestTcpToRelay(PROTO_TCP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTcpToSslTcpRelay) { | 
|  | TestTcpToRelay(PROTO_SSLTCP); | 
|  | } | 
|  | */ | 
|  |  | 
|  | // Outbound SSLTCP -> XXXX | 
|  | /* TODO: Enable these once testrelayserver can accept external SSL. | 
|  | TEST_F(PortTest, TestSslTcpToTcpRelay) { | 
|  | TestSslTcpToRelay(PROTO_TCP); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSslTcpToSslTcpRelay) { | 
|  | TestSslTcpToRelay(PROTO_SSLTCP); | 
|  | } | 
|  | */ | 
|  |  | 
|  | // Test that a connection will be dead and deleted if | 
|  | // i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds | 
|  | //    since it was created, or | 
|  | // ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT | 
|  | //     milliseconds since last receiving. | 
|  | TEST_F(PortTest, TestConnectionDead) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  | // Acquire address. | 
|  | ch1.Start(); | 
|  | ch2.Start(); | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  | ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); | 
|  |  | 
|  | // Test case that the connection has never received anything. | 
|  | int64_t before_created = rtc::TimeMillis(); | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | int64_t after_created = rtc::TimeMillis(); | 
|  | Connection* conn = ch1.conn(); | 
|  | ASSERT(conn != nullptr); | 
|  | // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned. | 
|  | conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); | 
|  | rtc::Thread::Current()->ProcessMessages(0); | 
|  | EXPECT_TRUE(ch1.conn() != nullptr); | 
|  | // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned. | 
|  | conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1); | 
|  | conn->Prune(); | 
|  | rtc::Thread::Current()->ProcessMessages(0); | 
|  | EXPECT_TRUE(ch1.conn() != nullptr); | 
|  | // It will be dead after MIN_CONNECTION_LIFETIME and pruned. | 
|  | conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); | 
|  | EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout); | 
|  |  | 
|  | // Test case that the connection has received something. | 
|  | // Create a connection again and receive a ping. | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | conn = ch1.conn(); | 
|  | ASSERT(conn != nullptr); | 
|  | int64_t before_last_receiving = rtc::TimeMillis(); | 
|  | conn->ReceivedPing(); | 
|  | int64_t after_last_receiving = rtc::TimeMillis(); | 
|  | // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT | 
|  | conn->UpdateState( | 
|  | before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1); | 
|  | rtc::Thread::Current()->ProcessMessages(100); | 
|  | EXPECT_TRUE(ch1.conn() != nullptr); | 
|  | conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1); | 
|  | EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout); | 
|  | } | 
|  |  | 
|  | // This test case verifies standard ICE features in STUN messages. Currently it | 
|  | // verifies Message Integrity attribute in STUN messages and username in STUN | 
|  | // binding request will have colon (":") between remote and local username. | 
|  | TEST_F(PortTest, TestLocalToLocalStandard) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | port1->SetIceTiebreaker(kTiebreaker1); | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | port2->SetIceTiebreaker(kTiebreaker2); | 
|  | // Same parameters as TestLocalToLocal above. | 
|  | TestConnectivity("udp", port1, "udp", port2, true, true, true, true); | 
|  | } | 
|  |  | 
|  | // This test is trying to validate a successful and failure scenario in a | 
|  | // loopback test when protocol is RFC5245. For success IceTiebreaker, username | 
|  | // should remain equal to the request generated by the port and role of port | 
|  | // must be in controlling. | 
|  | TEST_F(PortTest, TestLoopbackCal) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | lport->PrepareAddress(); | 
|  | ASSERT_FALSE(lport->Candidates().empty()); | 
|  | Connection* conn = lport->CreateConnection(lport->Candidates()[0], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | conn->Ping(0); | 
|  |  | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | conn->OnReadPacket(lport->last_stun_buf()->data<char>(), | 
|  | lport->last_stun_buf()->size(), | 
|  | rtc::PacketTime()); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); | 
|  |  | 
|  | // If the tiebreaker value is different from port, we expect a error | 
|  | // response. | 
|  | lport->Reset(); | 
|  | lport->AddCandidateAddress(kLocalAddr2); | 
|  | // Creating a different connection as |conn| is receiving. | 
|  | Connection* conn1 = lport->CreateConnection(lport->Candidates()[1], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | conn1->Ping(0); | 
|  |  | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | std::unique_ptr<IceMessage> modified_req( | 
|  | CreateStunMessage(STUN_BINDING_REQUEST)); | 
|  | const StunByteStringAttribute* username_attr = msg->GetByteString( | 
|  | STUN_ATTR_USERNAME); | 
|  | modified_req->AddAttribute(new StunByteStringAttribute( | 
|  | STUN_ATTR_USERNAME, username_attr->GetString())); | 
|  | // To make sure we receive error response, adding tiebreaker less than | 
|  | // what's present in request. | 
|  | modified_req->AddAttribute(new StunUInt64Attribute( | 
|  | STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1)); | 
|  | modified_req->AddMessageIntegrity("lpass"); | 
|  | modified_req->AddFingerprint(); | 
|  |  | 
|  | lport->Reset(); | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | WriteStunMessage(modified_req.get(), buf.get()); | 
|  | conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); | 
|  | } | 
|  |  | 
|  | // This test verifies role conflict signal is received when there is | 
|  | // conflict in the role. In this case both ports are in controlling and | 
|  | // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower | 
|  | // value of tiebreaker, when it receives ping request from |rport| it will | 
|  | // send role conflict signal. | 
|  | TEST_F(PortTest, TestIceRoleConflict) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  | ASSERT_FALSE(lport->Candidates().empty()); | 
|  | ASSERT_FALSE(rport->Candidates().empty()); | 
|  | Connection* lconn = lport->CreateConnection(rport->Candidates()[0], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | Connection* rconn = rport->CreateConnection(lport->Candidates()[0], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | rconn->Ping(0); | 
|  |  | 
|  | ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = rport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | // Send rport binding request to lport. | 
|  | lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), | 
|  | rport->last_stun_buf()->size(), | 
|  | rtc::PacketTime()); | 
|  |  | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); | 
|  | EXPECT_TRUE(role_conflict()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTcpNoDelay) { | 
|  | TCPPort* port1 = CreateTcpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | int option_value = -1; | 
|  | int success = port1->GetOption(rtc::Socket::OPT_NODELAY, | 
|  | &option_value); | 
|  | ASSERT_EQ(0, success);  // GetOption() should complete successfully w/ 0 | 
|  | ASSERT_EQ(1, option_value); | 
|  | delete port1; | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestDelayedBindingUdp) { | 
|  | FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); | 
|  | FakePacketSocketFactory socket_factory; | 
|  |  | 
|  | socket_factory.set_next_udp_socket(socket); | 
|  | std::unique_ptr<UDPPort> port(CreateUdpPort(kLocalAddr1, &socket_factory)); | 
|  |  | 
|  | socket->set_state(AsyncPacketSocket::STATE_BINDING); | 
|  | port->PrepareAddress(); | 
|  |  | 
|  | EXPECT_EQ(0U, port->Candidates().size()); | 
|  | socket->SignalAddressReady(socket, kLocalAddr2); | 
|  |  | 
|  | EXPECT_EQ(1U, port->Candidates().size()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestDelayedBindingTcp) { | 
|  | FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); | 
|  | FakePacketSocketFactory socket_factory; | 
|  |  | 
|  | socket_factory.set_next_server_tcp_socket(socket); | 
|  | std::unique_ptr<TCPPort> port(CreateTcpPort(kLocalAddr1, &socket_factory)); | 
|  |  | 
|  | socket->set_state(AsyncPacketSocket::STATE_BINDING); | 
|  | port->PrepareAddress(); | 
|  |  | 
|  | EXPECT_EQ(0U, port->Candidates().size()); | 
|  | socket->SignalAddressReady(socket, kLocalAddr2); | 
|  |  | 
|  | EXPECT_EQ(1U, port->Candidates().size()); | 
|  | } | 
|  |  | 
|  | void PortTest::TestCrossFamilyPorts(int type) { | 
|  | FakePacketSocketFactory factory; | 
|  | std::unique_ptr<Port> ports[4]; | 
|  | SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0), | 
|  | SocketAddress("192.168.1.4", 0), | 
|  | SocketAddress("2001:db8::1", 0), | 
|  | SocketAddress("2001:db8::2", 0)}; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); | 
|  | if (type == SOCK_DGRAM) { | 
|  | factory.set_next_udp_socket(socket); | 
|  | ports[i].reset(CreateUdpPort(addresses[i], &factory)); | 
|  | } else if (type == SOCK_STREAM) { | 
|  | factory.set_next_server_tcp_socket(socket); | 
|  | ports[i].reset(CreateTcpPort(addresses[i], &factory)); | 
|  | } | 
|  | socket->set_state(AsyncPacketSocket::STATE_BINDING); | 
|  | socket->SignalAddressReady(socket, addresses[i]); | 
|  | ports[i]->PrepareAddress(); | 
|  | } | 
|  |  | 
|  | // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate. | 
|  | if (type == SOCK_STREAM) { | 
|  | FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); | 
|  | factory.set_next_client_tcp_socket(clientsocket); | 
|  | } | 
|  | Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()), | 
|  | Port::ORIGIN_MESSAGE); | 
|  | EXPECT_TRUE(NULL == c); | 
|  | EXPECT_EQ(0U, ports[0]->connections().size()); | 
|  | c = ports[0]->CreateConnection(GetCandidate(ports[1].get()), | 
|  | Port::ORIGIN_MESSAGE); | 
|  | EXPECT_FALSE(NULL == c); | 
|  | EXPECT_EQ(1U, ports[0]->connections().size()); | 
|  |  | 
|  | // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate. | 
|  | if (type == SOCK_STREAM) { | 
|  | FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); | 
|  | factory.set_next_client_tcp_socket(clientsocket); | 
|  | } | 
|  | c = ports[2]->CreateConnection(GetCandidate(ports[0].get()), | 
|  | Port::ORIGIN_MESSAGE); | 
|  | EXPECT_TRUE(NULL == c); | 
|  | EXPECT_EQ(0U, ports[2]->connections().size()); | 
|  | c = ports[2]->CreateConnection(GetCandidate(ports[3].get()), | 
|  | Port::ORIGIN_MESSAGE); | 
|  | EXPECT_FALSE(NULL == c); | 
|  | EXPECT_EQ(1U, ports[2]->connections().size()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSkipCrossFamilyTcp) { | 
|  | TestCrossFamilyPorts(SOCK_STREAM); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSkipCrossFamilyUdp) { | 
|  | TestCrossFamilyPorts(SOCK_DGRAM); | 
|  | } | 
|  |  | 
|  | void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) { | 
|  | Connection* c = p1->CreateConnection(GetCandidate(p2), | 
|  | Port::ORIGIN_MESSAGE); | 
|  | if (can_connect) { | 
|  | EXPECT_FALSE(NULL == c); | 
|  | EXPECT_EQ(1U, p1->connections().size()); | 
|  | } else { | 
|  | EXPECT_TRUE(NULL == c); | 
|  | EXPECT_EQ(0U, p1->connections().size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestUdpV6CrossTypePorts) { | 
|  | FakePacketSocketFactory factory; | 
|  | std::unique_ptr<Port> ports[4]; | 
|  | SocketAddress addresses[4] = {SocketAddress("2001:db8::1", 0), | 
|  | SocketAddress("fe80::1", 0), | 
|  | SocketAddress("fe80::2", 0), | 
|  | SocketAddress("::1", 0)}; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket(); | 
|  | factory.set_next_udp_socket(socket); | 
|  | ports[i].reset(CreateUdpPort(addresses[i], &factory)); | 
|  | socket->set_state(AsyncPacketSocket::STATE_BINDING); | 
|  | socket->SignalAddressReady(socket, addresses[i]); | 
|  | ports[i]->PrepareAddress(); | 
|  | } | 
|  |  | 
|  | Port* standard = ports[0].get(); | 
|  | Port* link_local1 = ports[1].get(); | 
|  | Port* link_local2 = ports[2].get(); | 
|  | Port* localhost = ports[3].get(); | 
|  |  | 
|  | ExpectPortsCanConnect(false, link_local1, standard); | 
|  | ExpectPortsCanConnect(false, standard, link_local1); | 
|  | ExpectPortsCanConnect(false, link_local1, localhost); | 
|  | ExpectPortsCanConnect(false, localhost, link_local1); | 
|  |  | 
|  | ExpectPortsCanConnect(true, link_local1, link_local2); | 
|  | ExpectPortsCanConnect(true, localhost, standard); | 
|  | ExpectPortsCanConnect(true, standard, localhost); | 
|  | } | 
|  |  | 
|  | // This test verifies DSCP value set through SetOption interface can be | 
|  | // get through DefaultDscpValue. | 
|  | TEST_F(PortTest, TestDefaultDscpValue) { | 
|  | int dscp; | 
|  | std::unique_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1)); | 
|  | EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, | 
|  | rtc::DSCP_CS6)); | 
|  | EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); | 
|  | std::unique_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1)); | 
|  | EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, | 
|  | rtc::DSCP_AF31)); | 
|  | EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); | 
|  | EXPECT_EQ(rtc::DSCP_AF31, dscp); | 
|  | std::unique_ptr<StunPort> stunport( | 
|  | CreateStunPort(kLocalAddr1, nat_socket_factory1())); | 
|  | EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, | 
|  | rtc::DSCP_AF41)); | 
|  | EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); | 
|  | EXPECT_EQ(rtc::DSCP_AF41, dscp); | 
|  | std::unique_ptr<TurnPort> turnport1( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | // Socket is created in PrepareAddress. | 
|  | turnport1->PrepareAddress(); | 
|  | EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, | 
|  | rtc::DSCP_CS7)); | 
|  | EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp)); | 
|  | EXPECT_EQ(rtc::DSCP_CS7, dscp); | 
|  | // This will verify correct value returned without the socket. | 
|  | std::unique_ptr<TurnPort> turnport2( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, | 
|  | rtc::DSCP_CS6)); | 
|  | EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp)); | 
|  | EXPECT_EQ(rtc::DSCP_CS6, dscp); | 
|  | } | 
|  |  | 
|  | // Test sending STUN messages. | 
|  | TEST_F(PortTest, TestSendStunMessage) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | // Send a fake ping from lport to rport. | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  | ASSERT_FALSE(rport->Candidates().empty()); | 
|  | Connection* lconn = lport->CreateConnection( | 
|  | rport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | Connection* rconn = rport->CreateConnection( | 
|  | lport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | lconn->Ping(0); | 
|  |  | 
|  | // Check that it's a proper BINDING-REQUEST. | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | EXPECT_FALSE(msg->IsLegacy()); | 
|  | const StunByteStringAttribute* username_attr = | 
|  | msg->GetByteString(STUN_ATTR_USERNAME); | 
|  | ASSERT_TRUE(username_attr != NULL); | 
|  | const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY); | 
|  | ASSERT_TRUE(priority_attr != NULL); | 
|  | EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value()); | 
|  | EXPECT_EQ("rfrag:lfrag", username_attr->GetString()); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( | 
|  | lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size(), | 
|  | "rpass")); | 
|  | const StunUInt64Attribute* ice_controlling_attr = | 
|  | msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); | 
|  | ASSERT_TRUE(ice_controlling_attr != NULL); | 
|  | EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value()); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); | 
|  | EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateFingerprint( | 
|  | lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); | 
|  |  | 
|  | // Request should not include ping count. | 
|  | ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); | 
|  |  | 
|  | // Save a copy of the BINDING-REQUEST for use below. | 
|  | std::unique_ptr<IceMessage> request(CopyStunMessage(msg)); | 
|  |  | 
|  | // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE. | 
|  | rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), | 
|  | lport->last_stun_buf()->size(), rtc::PacketTime()); | 
|  | msg = rport->last_stun_msg(); | 
|  | ASSERT_TRUE(msg != NULL); | 
|  | EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); | 
|  | // Received a BINDING-RESPONSE. | 
|  | lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), | 
|  | rport->last_stun_buf()->size(), rtc::PacketTime()); | 
|  | // Verify the STUN Stats. | 
|  | EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total); | 
|  | EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response); | 
|  | EXPECT_EQ(1U, lconn->stats().recv_ping_responses); | 
|  | EXPECT_EQ(1U, rconn->stats().recv_ping_requests); | 
|  | EXPECT_EQ(1U, rconn->stats().sent_ping_responses); | 
|  |  | 
|  | EXPECT_FALSE(msg->IsLegacy()); | 
|  | const StunAddressAttribute* addr_attr = msg->GetAddress( | 
|  | STUN_ATTR_XOR_MAPPED_ADDRESS); | 
|  | ASSERT_TRUE(addr_attr != NULL); | 
|  | EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress()); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( | 
|  | rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(), | 
|  | "rpass")); | 
|  | EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateFingerprint( | 
|  | lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); | 
|  | // No USERNAME or PRIORITY in ICE responses. | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); | 
|  |  | 
|  | // Response should not include ping count. | 
|  | ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); | 
|  |  | 
|  | // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life, | 
|  | // but we can do it here. | 
|  | rport->SendBindingErrorResponse(request.get(), | 
|  | lport->Candidates()[0].address(), | 
|  | STUN_ERROR_SERVER_ERROR, | 
|  | STUN_ERROR_REASON_SERVER_ERROR); | 
|  | msg = rport->last_stun_msg(); | 
|  | ASSERT_TRUE(msg != NULL); | 
|  | EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); | 
|  | EXPECT_FALSE(msg->IsLegacy()); | 
|  | const StunErrorCodeAttribute* error_attr = msg->GetErrorCode(); | 
|  | ASSERT_TRUE(error_attr != NULL); | 
|  | EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code()); | 
|  | EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason()); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( | 
|  | rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(), | 
|  | "rpass")); | 
|  | EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); | 
|  | EXPECT_TRUE(StunMessage::ValidateFingerprint( | 
|  | lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); | 
|  | // No USERNAME with ICE. | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); | 
|  |  | 
|  | // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED | 
|  | // and (incremented) RETRANSMIT_COUNT attributes. | 
|  | rport->Reset(); | 
|  | rport->set_send_retransmit_count_attribute(true); | 
|  | rconn->Ping(0); | 
|  | rconn->Ping(0); | 
|  | rconn->Ping(0); | 
|  | ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); | 
|  | msg = rport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | const StunUInt64Attribute* ice_controlled_attr = | 
|  | msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); | 
|  | ASSERT_TRUE(ice_controlled_attr != NULL); | 
|  | EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value()); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); | 
|  |  | 
|  | // Request should include ping count. | 
|  | const StunUInt32Attribute* retransmit_attr = | 
|  | msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); | 
|  | ASSERT_TRUE(retransmit_attr != NULL); | 
|  | EXPECT_EQ(2U, retransmit_attr->value()); | 
|  |  | 
|  | // Respond with a BINDING-RESPONSE. | 
|  | request.reset(CopyStunMessage(msg)); | 
|  | lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), | 
|  | rport->last_stun_buf()->size(), rtc::PacketTime()); | 
|  | msg = lport->last_stun_msg(); | 
|  | // Receive the BINDING-RESPONSE. | 
|  | rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), | 
|  | lport->last_stun_buf()->size(), rtc::PacketTime()); | 
|  |  | 
|  | // Verify the Stun ping stats. | 
|  | EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total); | 
|  | EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); | 
|  | EXPECT_EQ(1U, rconn->stats().recv_ping_responses); | 
|  | EXPECT_EQ(1U, lconn->stats().sent_ping_responses); | 
|  | EXPECT_EQ(1U, lconn->stats().recv_ping_requests); | 
|  | // Ping after receiver the first response | 
|  | rconn->Ping(0); | 
|  | rconn->Ping(0); | 
|  | EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total); | 
|  | EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); | 
|  |  | 
|  | // Response should include same ping count. | 
|  | retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); | 
|  | ASSERT_TRUE(retransmit_attr != NULL); | 
|  | EXPECT_EQ(2U, retransmit_attr->value()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestUseCandidateAttribute) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | // Send a fake ping from lport to rport. | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  | ASSERT_FALSE(rport->Candidates().empty()); | 
|  | Connection* lconn = lport->CreateConnection( | 
|  | rport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | lconn->Ping(0); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = lport->last_stun_msg(); | 
|  | const StunUInt64Attribute* ice_controlling_attr = | 
|  | msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); | 
|  | ASSERT_TRUE(ice_controlling_attr != NULL); | 
|  | const StunByteStringAttribute* use_candidate_attr = msg->GetByteString( | 
|  | STUN_ATTR_USE_CANDIDATE); | 
|  | ASSERT_TRUE(use_candidate_attr != NULL); | 
|  | } | 
|  |  | 
|  | // Tests that when the network type changes, the network cost of the port will | 
|  | // change, the network cost of the local candidates will change. Also tests that | 
|  | // the remote network costs are updated with the stun binding requests. | 
|  | TEST_F(PortTest, TestNetworkCostChange) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  |  | 
|  | // Default local port cost is rtc::kNetworkCostUnknown. | 
|  | EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost()); | 
|  | ASSERT_TRUE(!lport->Candidates().empty()); | 
|  | for (const cricket::Candidate& candidate : lport->Candidates()) { | 
|  | EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost()); | 
|  | } | 
|  |  | 
|  | // Change the network type to wifi. | 
|  | SetNetworkType(rtc::ADAPTER_TYPE_WIFI); | 
|  | EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost()); | 
|  | for (const cricket::Candidate& candidate : lport->Candidates()) { | 
|  | EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost()); | 
|  | } | 
|  |  | 
|  | // Add a connection and then change the network type. | 
|  | Connection* lconn = | 
|  | lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | // Change the network type to cellular. | 
|  | SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); | 
|  | EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost()); | 
|  | for (const cricket::Candidate& candidate : lport->Candidates()) { | 
|  | EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost()); | 
|  | } | 
|  |  | 
|  | SetNetworkType(rtc::ADAPTER_TYPE_WIFI); | 
|  | Connection* rconn = | 
|  | rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); | 
|  | lconn->Ping(0); | 
|  | // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping | 
|  | // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the | 
|  | // message is handled in rconn, The rconn's remote candidate will have cost | 
|  | // rtc::kNetworkCostHigh; | 
|  | EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost()); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = lport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | // Pass the binding request to rport. | 
|  | rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), | 
|  | lport->last_stun_buf()->size(), rtc::PacketTime()); | 
|  | // Wait until rport sends the response and then check the remote network cost. | 
|  | ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); | 
|  | EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestNetworkInfoAttribute) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | uint16_t lnetwork_id = 9; | 
|  | lport->Network()->set_id(lnetwork_id); | 
|  | // Send a fake ping from lport to rport. | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  | Connection* lconn = | 
|  | lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | lconn->Ping(0); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = lport->last_stun_msg(); | 
|  | const StunUInt32Attribute* network_info_attr = | 
|  | msg->GetUInt32(STUN_ATTR_NETWORK_INFO); | 
|  | ASSERT_TRUE(network_info_attr != NULL); | 
|  | uint32_t network_info = network_info_attr->value(); | 
|  | EXPECT_EQ(lnetwork_id, network_info >> 16); | 
|  | // Default network has unknown type and cost kNetworkCostUnknown. | 
|  | EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF); | 
|  |  | 
|  | // Set the network type to be cellular so its cost will be kNetworkCostHigh. | 
|  | // Send a fake ping from rport to lport. | 
|  | SetNetworkType(rtc::ADAPTER_TYPE_CELLULAR); | 
|  | uint16_t rnetwork_id = 8; | 
|  | rport->Network()->set_id(rnetwork_id); | 
|  | Connection* rconn = | 
|  | rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | rconn->Ping(0); | 
|  | ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); | 
|  | msg = rport->last_stun_msg(); | 
|  | network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO); | 
|  | ASSERT_TRUE(network_info_attr != NULL); | 
|  | network_info = network_info_attr->value(); | 
|  | EXPECT_EQ(rnetwork_id, network_info >> 16); | 
|  | EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF); | 
|  | } | 
|  |  | 
|  | // Test handling STUN messages. | 
|  | TEST_F(PortTest, TestHandleStunMessage) { | 
|  | // Our port will act as the "remote" port. | 
|  | std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  |  | 
|  | std::unique_ptr<IceMessage> in_msg, out_msg; | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | rtc::SocketAddress addr(kLocalAddr1); | 
|  | std::string username; | 
|  |  | 
|  | // BINDING-REQUEST from local to remote with valid ICE username, | 
|  | // MESSAGE-INTEGRITY, and FINGERPRINT. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "rfrag:lfrag")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() != NULL); | 
|  | EXPECT_EQ("lfrag", username); | 
|  |  | 
|  | // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT. | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE)); | 
|  | in_msg->AddAttribute( | 
|  | new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() != NULL); | 
|  | EXPECT_EQ("", username); | 
|  |  | 
|  | // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT. | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE)); | 
|  | in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE, | 
|  | STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR)); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() != NULL); | 
|  | EXPECT_EQ("", username); | 
|  | ASSERT_TRUE(out_msg->GetErrorCode() != NULL); | 
|  | EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code()); | 
|  | EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), | 
|  | out_msg->GetErrorCode()->reason()); | 
|  | } | 
|  |  | 
|  | // Tests handling of ICE binding requests with missing or incorrect usernames. | 
|  | TEST_F(PortTest, TestHandleStunMessageBadUsername) { | 
|  | std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  |  | 
|  | std::unique_ptr<IceMessage> in_msg, out_msg; | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | rtc::SocketAddress addr(kLocalAddr1); | 
|  | std::string username; | 
|  |  | 
|  | // BINDING-REQUEST with no username. | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST)); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); | 
|  |  | 
|  | // BINDING-REQUEST with empty username. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); | 
|  |  | 
|  | // BINDING-REQUEST with too-short username. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); | 
|  |  | 
|  | // BINDING-REQUEST with reversed username. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "lfrag:rfrag")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); | 
|  |  | 
|  | // BINDING-REQUEST with garbage username. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "abcd:efgh")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); | 
|  | } | 
|  |  | 
|  | // Test handling STUN messages with missing or malformed M-I. | 
|  | TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) { | 
|  | // Our port will act as the "remote" port. | 
|  | std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  |  | 
|  | std::unique_ptr<IceMessage> in_msg, out_msg; | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | rtc::SocketAddress addr(kLocalAddr1); | 
|  | std::string username; | 
|  |  | 
|  | // BINDING-REQUEST from local to remote with valid ICE username and | 
|  | // FINGERPRINT, but no MESSAGE-INTEGRITY. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "rfrag:lfrag")); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); | 
|  |  | 
|  | // BINDING-REQUEST from local to remote with valid ICE username and | 
|  | // FINGERPRINT, but invalid MESSAGE-INTEGRITY. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "rfrag:lfrag")); | 
|  | in_msg->AddMessageIntegrity("invalid"); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() == NULL); | 
|  | EXPECT_EQ("", username); | 
|  | EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); | 
|  |  | 
|  | // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked | 
|  | // by the Connection, not the Port, since they require the remote username. | 
|  | // Change this test to pass in data via Connection::OnReadPacket instead. | 
|  | } | 
|  |  | 
|  | // Test handling STUN messages with missing or malformed FINGERPRINT. | 
|  | TEST_F(PortTest, TestHandleStunMessageBadFingerprint) { | 
|  | // Our port will act as the "remote" port. | 
|  | std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  |  | 
|  | std::unique_ptr<IceMessage> in_msg, out_msg; | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | rtc::SocketAddress addr(kLocalAddr1); | 
|  | std::string username; | 
|  |  | 
|  | // BINDING-REQUEST from local to remote with valid ICE username and | 
|  | // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail. | 
|  | in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, | 
|  | "rfrag:lfrag")); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  |  | 
|  | // Now, add a fingerprint, but munge the message so it's not valid. | 
|  | in_msg->AddFingerprint(); | 
|  | in_msg->SetTransactionID("TESTTESTBADD"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  |  | 
|  | // Valid BINDING-RESPONSE, except no FINGERPRINT. | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE)); | 
|  | in_msg->AddAttribute( | 
|  | new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  |  | 
|  | // Now, add a fingerprint, but munge the message so it's not valid. | 
|  | in_msg->AddFingerprint(); | 
|  | in_msg->SetTransactionID("TESTTESTBADD"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  |  | 
|  | // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT. | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE)); | 
|  | in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE, | 
|  | STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR)); | 
|  | in_msg->AddMessageIntegrity("rpass"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  |  | 
|  | // Now, add a fingerprint, but munge the message so it's not valid. | 
|  | in_msg->AddFingerprint(); | 
|  | in_msg->SetTransactionID("TESTTESTBADD"); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_EQ(0, port->last_stun_error_code()); | 
|  | } | 
|  |  | 
|  | // Test handling of STUN binding indication messages . STUN binding | 
|  | // indications are allowed only to the connection which is in read mode. | 
|  | TEST_F(PortTest, TestHandleStunBindingIndication) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr2, "lfrag", "lpass")); | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | lport->SetIceTiebreaker(kTiebreaker1); | 
|  |  | 
|  | // Verifying encoding and decoding STUN indication message. | 
|  | std::unique_ptr<IceMessage> in_msg, out_msg; | 
|  | std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); | 
|  | rtc::SocketAddress addr(kLocalAddr1); | 
|  | std::string username; | 
|  |  | 
|  | in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION)); | 
|  | in_msg->AddFingerprint(); | 
|  | WriteStunMessage(in_msg.get(), buf.get()); | 
|  | EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, | 
|  | &username)); | 
|  | EXPECT_TRUE(out_msg.get() != NULL); | 
|  | EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION); | 
|  | EXPECT_EQ("", username); | 
|  |  | 
|  | // Verify connection can handle STUN indication and updates | 
|  | // last_ping_received. | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | lport->PrepareAddress(); | 
|  | rport->PrepareAddress(); | 
|  | ASSERT_FALSE(lport->Candidates().empty()); | 
|  | ASSERT_FALSE(rport->Candidates().empty()); | 
|  |  | 
|  | Connection* lconn = lport->CreateConnection(rport->Candidates()[0], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | Connection* rconn = rport->CreateConnection(lport->Candidates()[0], | 
|  | Port::ORIGIN_MESSAGE); | 
|  | rconn->Ping(0); | 
|  |  | 
|  | ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = rport->last_stun_msg(); | 
|  | EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); | 
|  | // Send rport binding request to lport. | 
|  | lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), | 
|  | rport->last_stun_buf()->size(), | 
|  | rtc::PacketTime()); | 
|  | ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000); | 
|  | EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); | 
|  | int64_t last_ping_received1 = lconn->last_ping_received(); | 
|  |  | 
|  | // Adding a delay of 100ms. | 
|  | rtc::Thread::Current()->ProcessMessages(100); | 
|  | // Pinging lconn using stun indication message. | 
|  | lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); | 
|  | int64_t last_ping_received2 = lconn->last_ping_received(); | 
|  | EXPECT_GT(last_ping_received2, last_ping_received1); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestComputeCandidatePriority) { | 
|  | std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr1, "name", "pass")); | 
|  | port->set_type_preference(90); | 
|  | port->set_component(177); | 
|  | port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234)); | 
|  | port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234)); | 
|  | // These should all be: | 
|  | // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177) | 
|  | uint32_t expected_priority_v4 = 1509957199U; | 
|  | uint32_t expected_priority_v6 = 1509959759U; | 
|  | uint32_t expected_priority_ula = 1509962319U; | 
|  | uint32_t expected_priority_v4mapped = expected_priority_v4; | 
|  | uint32_t expected_priority_v4compat = 1509949775U; | 
|  | uint32_t expected_priority_6to4 = 1509954639U; | 
|  | uint32_t expected_priority_teredo = 1509952079U; | 
|  | uint32_t expected_priority_sitelocal = 1509949775U; | 
|  | uint32_t expected_priority_6bone = 1509949775U; | 
|  | ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority()); | 
|  | ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority()); | 
|  | ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority()); | 
|  | ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority()); | 
|  | ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority()); | 
|  | ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority()); | 
|  | ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority()); | 
|  | ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority()); | 
|  | ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority()); | 
|  | } | 
|  |  | 
|  | // In the case of shared socket, one port may be shared by local and stun. | 
|  | // Test that candidates with different types will have different foundation. | 
|  | TEST_F(PortTest, TestFoundation) { | 
|  | std::unique_ptr<TestPort> testport( | 
|  | CreateTestPort(kLocalAddr1, "name", "pass")); | 
|  | testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, | 
|  | LOCAL_PORT_TYPE, | 
|  | cricket::ICE_TYPE_PREFERENCE_HOST, false); | 
|  | testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, | 
|  | STUN_PORT_TYPE, | 
|  | cricket::ICE_TYPE_PREFERENCE_SRFLX, true); | 
|  | EXPECT_NE(testport->Candidates()[0].foundation(), | 
|  | testport->Candidates()[1].foundation()); | 
|  | } | 
|  |  | 
|  | // This test verifies the foundation of different types of ICE candidates. | 
|  | TEST_F(PortTest, TestCandidateFoundation) { | 
|  | std::unique_ptr<rtc::NATServer> nat_server( | 
|  | CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); | 
|  | std::unique_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1)); | 
|  | udpport1->PrepareAddress(); | 
|  | std::unique_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1)); | 
|  | udpport2->PrepareAddress(); | 
|  | EXPECT_EQ(udpport1->Candidates()[0].foundation(), | 
|  | udpport2->Candidates()[0].foundation()); | 
|  | std::unique_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1)); | 
|  | tcpport1->PrepareAddress(); | 
|  | std::unique_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1)); | 
|  | tcpport2->PrepareAddress(); | 
|  | EXPECT_EQ(tcpport1->Candidates()[0].foundation(), | 
|  | tcpport2->Candidates()[0].foundation()); | 
|  | std::unique_ptr<Port> stunport( | 
|  | CreateStunPort(kLocalAddr1, nat_socket_factory1())); | 
|  | stunport->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout); | 
|  | EXPECT_NE(tcpport1->Candidates()[0].foundation(), | 
|  | stunport->Candidates()[0].foundation()); | 
|  | EXPECT_NE(tcpport2->Candidates()[0].foundation(), | 
|  | stunport->Candidates()[0].foundation()); | 
|  | EXPECT_NE(udpport1->Candidates()[0].foundation(), | 
|  | stunport->Candidates()[0].foundation()); | 
|  | EXPECT_NE(udpport2->Candidates()[0].foundation(), | 
|  | stunport->Candidates()[0].foundation()); | 
|  | // Verify GTURN candidate foundation. | 
|  | std::unique_ptr<RelayPort> relayport(CreateGturnPort(kLocalAddr1)); | 
|  | relayport->AddServerAddress( | 
|  | cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); | 
|  | relayport->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout); | 
|  | EXPECT_NE(udpport1->Candidates()[0].foundation(), | 
|  | relayport->Candidates()[0].foundation()); | 
|  | EXPECT_NE(udpport2->Candidates()[0].foundation(), | 
|  | relayport->Candidates()[0].foundation()); | 
|  | // Verifying TURN candidate foundation. | 
|  | std::unique_ptr<Port> turnport1( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | turnport1->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout); | 
|  | EXPECT_NE(udpport1->Candidates()[0].foundation(), | 
|  | turnport1->Candidates()[0].foundation()); | 
|  | EXPECT_NE(udpport2->Candidates()[0].foundation(), | 
|  | turnport1->Candidates()[0].foundation()); | 
|  | EXPECT_NE(stunport->Candidates()[0].foundation(), | 
|  | turnport1->Candidates()[0].foundation()); | 
|  | std::unique_ptr<Port> turnport2( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | turnport2->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout); | 
|  | EXPECT_EQ(turnport1->Candidates()[0].foundation(), | 
|  | turnport2->Candidates()[0].foundation()); | 
|  |  | 
|  | // Running a second turn server, to get different base IP address. | 
|  | SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT); | 
|  | SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0); | 
|  | TestTurnServer turn_server2( | 
|  | rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2); | 
|  | std::unique_ptr<Port> turnport3( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP, | 
|  | kTurnUdpIntAddr2)); | 
|  | turnport3->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout); | 
|  | EXPECT_NE(turnport3->Candidates()[0].foundation(), | 
|  | turnport2->Candidates()[0].foundation()); | 
|  |  | 
|  | // Start a TCP turn server, and check that two turn candidates have | 
|  | // different foundations if their relay protocols are different. | 
|  | TestTurnServer turn_server3(rtc::Thread::Current(), kTurnTcpIntAddr, | 
|  | kTurnUdpExtAddr, PROTO_TCP); | 
|  | std::unique_ptr<Port> turnport4( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP)); | 
|  | turnport4->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kTimeout); | 
|  | EXPECT_NE(turnport2->Candidates()[0].foundation(), | 
|  | turnport4->Candidates()[0].foundation()); | 
|  | } | 
|  |  | 
|  | // This test verifies the related addresses of different types of | 
|  | // ICE candiates. | 
|  | TEST_F(PortTest, TestCandidateRelatedAddress) { | 
|  | std::unique_ptr<rtc::NATServer> nat_server( | 
|  | CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); | 
|  | std::unique_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1)); | 
|  | udpport->PrepareAddress(); | 
|  | // For UDPPort, related address will be empty. | 
|  | EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil()); | 
|  | // Testing related address for stun candidates. | 
|  | // For stun candidate related address must be equal to the base | 
|  | // socket address. | 
|  | std::unique_ptr<StunPort> stunport( | 
|  | CreateStunPort(kLocalAddr1, nat_socket_factory1())); | 
|  | stunport->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout); | 
|  | // Check STUN candidate address. | 
|  | EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), | 
|  | kNatAddr1.ipaddr()); | 
|  | // Check STUN candidate related address. | 
|  | EXPECT_EQ(stunport->Candidates()[0].related_address(), | 
|  | stunport->GetLocalAddress()); | 
|  | // Verifying the related address for the GTURN candidates. | 
|  | // NOTE: In case of GTURN related address will be equal to the mapped | 
|  | // address, but address(mapped) will not be XOR. | 
|  | std::unique_ptr<RelayPort> relayport(CreateGturnPort(kLocalAddr1)); | 
|  | relayport->AddServerAddress( | 
|  | cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); | 
|  | relayport->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout); | 
|  | // For Gturn related address is set to "0.0.0.0:0" | 
|  | EXPECT_EQ(rtc::SocketAddress(), | 
|  | relayport->Candidates()[0].related_address()); | 
|  | // Verifying the related address for TURN candidate. | 
|  | // For TURN related address must be equal to the mapped address. | 
|  | std::unique_ptr<Port> turnport( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | turnport->PrepareAddress(); | 
|  | ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout); | 
|  | EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), | 
|  | turnport->Candidates()[0].address().ipaddr()); | 
|  | EXPECT_EQ(kNatAddr1.ipaddr(), | 
|  | turnport->Candidates()[0].related_address().ipaddr()); | 
|  | } | 
|  |  | 
|  | // Test priority value overflow handling when preference is set to 3. | 
|  | TEST_F(PortTest, TestCandidatePriority) { | 
|  | cricket::Candidate cand1; | 
|  | cand1.set_priority(3); | 
|  | cricket::Candidate cand2; | 
|  | cand2.set_priority(1); | 
|  | EXPECT_TRUE(cand1.priority() > cand2.priority()); | 
|  | } | 
|  |  | 
|  | // Test the Connection priority is calculated correctly. | 
|  | TEST_F(PortTest, TestConnectionPriority) { | 
|  | std::unique_ptr<TestPort> lport( | 
|  | CreateTestPort(kLocalAddr1, "lfrag", "lpass")); | 
|  | lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST); | 
|  | std::unique_ptr<TestPort> rport( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass")); | 
|  | rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY); | 
|  | lport->set_component(123); | 
|  | lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); | 
|  | rport->set_component(23); | 
|  | rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234)); | 
|  |  | 
|  | EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority()); | 
|  | EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority()); | 
|  |  | 
|  | // RFC 5245 | 
|  | // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | Connection* lconn = lport->CreateConnection( | 
|  | rport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | #if defined(WEBRTC_WIN) | 
|  | EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority()); | 
|  | #else | 
|  | EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority()); | 
|  | #endif | 
|  |  | 
|  | lport->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | rport->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | Connection* rconn = rport->CreateConnection( | 
|  | lport->Candidates()[0], Port::ORIGIN_MESSAGE); | 
|  | #if defined(WEBRTC_WIN) | 
|  | EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority()); | 
|  | #else | 
|  | EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestWritableState) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  |  | 
|  | // Set up channels. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  |  | 
|  | // Acquire addresses. | 
|  | ch1.Start(); | 
|  | ch2.Start(); | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  | ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout); | 
|  |  | 
|  | // Send a ping from src to dst. | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | ASSERT_TRUE(ch1.conn() != NULL); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); | 
|  | EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect | 
|  | ch1.Ping(); | 
|  | WAIT(!ch2.remote_address().IsNil(), kTimeout); | 
|  |  | 
|  | // Data should be unsendable until the connection is accepted. | 
|  | char data[] = "abcd"; | 
|  | int data_size = arraysize(data); | 
|  | rtc::PacketOptions options; | 
|  | EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options)); | 
|  |  | 
|  | // Accept the connection to return the binding response, transition to | 
|  | // writable, and allow data to be sent. | 
|  | ch2.AcceptConnection(GetCandidate(port1)); | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), | 
|  | kTimeout); | 
|  | EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); | 
|  |  | 
|  | // Ask the connection to update state as if enough time has passed to lose | 
|  | // full writability and 5 pings went unresponded to. We'll accomplish the | 
|  | // latter by sending pings but not pumping messages. | 
|  | for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { | 
|  | ch1.Ping(i); | 
|  | } | 
|  | int unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500; | 
|  | ch1.conn()->UpdateState(unreliable_timeout_delay); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); | 
|  |  | 
|  | // Data should be able to be sent in this state. | 
|  | EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); | 
|  |  | 
|  | // And now allow the other side to process the pings and send binding | 
|  | // responses. | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), | 
|  | kTimeout); | 
|  |  | 
|  | // Wait long enough for a full timeout (past however long we've already | 
|  | // waited). | 
|  | for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { | 
|  | ch1.Ping(unreliable_timeout_delay + i); | 
|  | } | 
|  | ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT + | 
|  | 500u); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); | 
|  |  | 
|  | // Now that the connection has completely timed out, data send should fail. | 
|  | EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options)); | 
|  |  | 
|  | ch1.Stop(); | 
|  | ch2.Stop(); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestTimeoutForNeverWritable) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  |  | 
|  | // Set up channels. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  |  | 
|  | // Acquire addresses. | 
|  | ch1.Start(); | 
|  | ch2.Start(); | 
|  |  | 
|  | ch1.CreateConnection(GetCandidate(port2)); | 
|  | ASSERT_TRUE(ch1.conn() != NULL); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); | 
|  |  | 
|  | // Attempt to go directly to write timeout. | 
|  | for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { | 
|  | ch1.Ping(i); | 
|  | } | 
|  | ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); | 
|  | } | 
|  |  | 
|  | // This test verifies the connection setup between ICEMODE_FULL | 
|  | // and ICEMODE_LITE. | 
|  | // In this test |ch1| behaves like FULL mode client and we have created | 
|  | // port which responds to the ping message just like LITE client. | 
|  | TEST_F(PortTest, TestIceLiteConnectivity) { | 
|  | TestPort* ice_full_port = CreateTestPort( | 
|  | kLocalAddr1, "lfrag", "lpass", | 
|  | cricket::ICEROLE_CONTROLLING, kTiebreaker1); | 
|  |  | 
|  | std::unique_ptr<TestPort> ice_lite_port( | 
|  | CreateTestPort(kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, | 
|  | kTiebreaker2)); | 
|  | // Setup TestChannel. This behaves like FULL mode client. | 
|  | TestChannel ch1(ice_full_port); | 
|  | ch1.SetIceMode(ICEMODE_FULL); | 
|  |  | 
|  | // Start gathering candidates. | 
|  | ch1.Start(); | 
|  | ice_lite_port->PrepareAddress(); | 
|  |  | 
|  | ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout); | 
|  | ASSERT_FALSE(ice_lite_port->Candidates().empty()); | 
|  |  | 
|  | ch1.CreateConnection(GetCandidate(ice_lite_port.get())); | 
|  | ASSERT_TRUE(ch1.conn() != NULL); | 
|  | EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); | 
|  |  | 
|  | // Send ping from full mode client. | 
|  | // This ping must not have USE_CANDIDATE_ATTR. | 
|  | ch1.Ping(); | 
|  |  | 
|  | // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly | 
|  | // from port. | 
|  | ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000); | 
|  | IceMessage* msg = ice_full_port->last_stun_msg(); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); | 
|  |  | 
|  | // Respond with a BINDING-RESPONSE from litemode client. | 
|  | // NOTE: Ideally we should't create connection at this stage from lite | 
|  | // port, as it should be done only after receiving ping with USE_CANDIDATE. | 
|  | // But we need a connection to send a response message. | 
|  | ice_lite_port->CreateConnection( | 
|  | ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE); | 
|  | std::unique_ptr<IceMessage> request(CopyStunMessage(msg)); | 
|  | ice_lite_port->SendBindingResponse( | 
|  | request.get(), ice_full_port->Candidates()[0].address()); | 
|  |  | 
|  | // Feeding the respone message from litemode to the full mode connection. | 
|  | ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(), | 
|  | ice_lite_port->last_stun_buf()->size(), | 
|  | rtc::PacketTime()); | 
|  | // Verifying full mode connection becomes writable from the response. | 
|  | EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), | 
|  | kTimeout); | 
|  | EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout); | 
|  |  | 
|  | // Clear existing stun messsages. Otherwise we will process old stun | 
|  | // message right after we send ping. | 
|  | ice_full_port->Reset(); | 
|  | // Send ping. This must have USE_CANDIDATE_ATTR. | 
|  | ch1.Ping(); | 
|  | ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000); | 
|  | msg = ice_full_port->last_stun_msg(); | 
|  | EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); | 
|  | ch1.Stop(); | 
|  | } | 
|  |  | 
|  | // This test case verifies that the CONTROLLING port does not time out. | 
|  | TEST_F(PortTest, TestControllingNoTimeout) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | ConnectToSignalDestroyed(port1); | 
|  | port1->set_timeout_delay(10);  // milliseconds | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | port1->SetIceTiebreaker(kTiebreaker1); | 
|  |  | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | port2->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | // Set up channels and ensure both ports will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  |  | 
|  | // Simulate a connection that succeeds, and then is destroyed. | 
|  | StartConnectAndStopChannels(&ch1, &ch2); | 
|  |  | 
|  | // After the connection is destroyed, the port should not be destroyed. | 
|  | rtc::Thread::Current()->ProcessMessages(kTimeout); | 
|  | EXPECT_FALSE(destroyed()); | 
|  | } | 
|  |  | 
|  | // This test case verifies that the CONTROLLED port does time out, but only | 
|  | // after connectivity is lost. | 
|  | TEST_F(PortTest, TestControlledTimeout) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | port1->SetIceTiebreaker(kTiebreaker1); | 
|  |  | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | ConnectToSignalDestroyed(port2); | 
|  | port2->set_timeout_delay(10);  // milliseconds | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | port2->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | // The connection must not be destroyed before a connection is attempted. | 
|  | EXPECT_FALSE(destroyed()); | 
|  |  | 
|  | port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  | port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | // Set up channels and ensure both ports will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  |  | 
|  | // Simulate a connection that succeeds, and then is destroyed. | 
|  | StartConnectAndStopChannels(&ch1, &ch2); | 
|  |  | 
|  | // The controlled port should be destroyed after 10 milliseconds. | 
|  | EXPECT_TRUE_WAIT(destroyed(), kTimeout); | 
|  | } | 
|  |  | 
|  | // This test case verifies that if the role of a port changes from controlled | 
|  | // to controlling after all connections fail, the port will not be destroyed. | 
|  | TEST_F(PortTest, TestControlledToControllingNotDestroyed) { | 
|  | UDPPort* port1 = CreateUdpPort(kLocalAddr1); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  | port1->SetIceTiebreaker(kTiebreaker1); | 
|  |  | 
|  | UDPPort* port2 = CreateUdpPort(kLocalAddr2); | 
|  | ConnectToSignalDestroyed(port2); | 
|  | port2->set_timeout_delay(10);  // milliseconds | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | port2->SetIceTiebreaker(kTiebreaker2); | 
|  |  | 
|  | // The connection must not be destroyed before a connection is attempted. | 
|  | EXPECT_FALSE(destroyed()); | 
|  |  | 
|  | port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  | port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); | 
|  |  | 
|  | // Set up channels and ensure both ports will be deleted. | 
|  | TestChannel ch1(port1); | 
|  | TestChannel ch2(port2); | 
|  |  | 
|  | // Simulate a connection that succeeds, and then is destroyed. | 
|  | StartConnectAndStopChannels(&ch1, &ch2); | 
|  | // Switch the role after all connections are destroyed. | 
|  | EXPECT_TRUE_WAIT(ch2.conn() == nullptr, kTimeout); | 
|  | port1->SetIceRole(cricket::ICEROLE_CONTROLLED); | 
|  | port2->SetIceRole(cricket::ICEROLE_CONTROLLING); | 
|  |  | 
|  | // After the connection is destroyed, the port should not be destroyed. | 
|  | rtc::Thread::Current()->ProcessMessages(kTimeout); | 
|  | EXPECT_FALSE(destroyed()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestSupportsProtocol) { | 
|  | std::unique_ptr<Port> udp_port(CreateUdpPort(kLocalAddr1)); | 
|  | EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); | 
|  | EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); | 
|  |  | 
|  | std::unique_ptr<Port> stun_port( | 
|  | CreateStunPort(kLocalAddr1, nat_socket_factory1())); | 
|  | EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME)); | 
|  | EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME)); | 
|  |  | 
|  | std::unique_ptr<Port> tcp_port(CreateTcpPort(kLocalAddr1)); | 
|  | EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); | 
|  | EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME)); | 
|  | EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); | 
|  |  | 
|  | std::unique_ptr<Port> turn_port( | 
|  | CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP)); | 
|  | EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME)); | 
|  | EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME)); | 
|  | } | 
|  |  | 
|  | // Test that SetIceParameters updates the component, ufrag and password | 
|  | // on both the port itself and its candidates. | 
|  | TEST_F(PortTest, TestSetIceParameters) { | 
|  | std::unique_ptr<TestPort> port( | 
|  | CreateTestPort(kLocalAddr1, "ufrag1", "password1")); | 
|  | port->PrepareAddress(); | 
|  | EXPECT_EQ(1UL, port->Candidates().size()); | 
|  | port->SetIceParameters(1, "ufrag2", "password2"); | 
|  | EXPECT_EQ(1, port->component()); | 
|  | EXPECT_EQ("ufrag2", port->username_fragment()); | 
|  | EXPECT_EQ("password2", port->password()); | 
|  | const Candidate& candidate = port->Candidates()[0]; | 
|  | EXPECT_EQ(1, candidate.component()); | 
|  | EXPECT_EQ("ufrag2", candidate.username()); | 
|  | EXPECT_EQ("password2", candidate.password()); | 
|  | } | 
|  |  | 
|  | TEST_F(PortTest, TestAddConnectionWithSameAddress) { | 
|  | std::unique_ptr<TestPort> port( | 
|  | CreateTestPort(kLocalAddr1, "ufrag1", "password1")); | 
|  | port->PrepareAddress(); | 
|  | EXPECT_EQ(1u, port->Candidates().size()); | 
|  | rtc::SocketAddress address("1.1.1.1", 5000); | 
|  | cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, ""); | 
|  | cricket::Connection* conn1 = | 
|  | port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); | 
|  | cricket::Connection* conn_in_use = port->GetConnection(address); | 
|  | EXPECT_EQ(conn1, conn_in_use); | 
|  | EXPECT_EQ(0u, conn_in_use->remote_candidate().generation()); | 
|  |  | 
|  | // Creating with a candidate with the same address again will get us a | 
|  | // different connection with the new candidate. | 
|  | candidate.set_generation(2); | 
|  | cricket::Connection* conn2 = | 
|  | port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); | 
|  | EXPECT_NE(conn1, conn2); | 
|  | conn_in_use = port->GetConnection(address); | 
|  | EXPECT_EQ(conn2, conn_in_use); | 
|  | EXPECT_EQ(2u, conn_in_use->remote_candidate().generation()); | 
|  |  | 
|  | // Make sure the new connection was not deleted. | 
|  | rtc::Thread::Current()->ProcessMessages(300); | 
|  | EXPECT_TRUE(port->GetConnection(address) != nullptr); | 
|  | } |