|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <stdint.h> | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | #include <sys/timeb.h> | 
|  | #endif | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/numerics/safe_conversions.h" | 
|  | #include "rtc_base/system_time.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | ClockInterface* g_clock = nullptr; | 
|  |  | 
|  | ClockInterface* SetClockForTesting(ClockInterface* clock) { | 
|  | ClockInterface* prev = g_clock; | 
|  | g_clock = clock; | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | ClockInterface* GetClockForTesting() { | 
|  | return g_clock; | 
|  | } | 
|  |  | 
|  | #if defined(WINUWP) | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class TimeHelper final { | 
|  | public: | 
|  | TimeHelper(const TimeHelper&) = delete; | 
|  |  | 
|  | // Resets the clock based upon an NTP server. This routine must be called | 
|  | // prior to the main system start-up to ensure all clocks are based upon | 
|  | // an NTP server time if NTP synchronization is required. No critical | 
|  | // section is used thus this method must be called prior to any clock | 
|  | // routines being used. | 
|  | static void SyncWithNtp(int64_t ntp_server_time_ms) { | 
|  | auto& singleton = Singleton(); | 
|  | TIME_ZONE_INFORMATION time_zone; | 
|  | GetTimeZoneInformation(&time_zone); | 
|  | int64_t time_zone_bias_ns = | 
|  | rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000; | 
|  | singleton.app_start_time_ns_ = | 
|  | (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 - | 
|  | time_zone_bias_ns; | 
|  | singleton.UpdateReferenceTime(); | 
|  | } | 
|  |  | 
|  | // Returns the number of nanoseconds that have passed since unix epoch. | 
|  | static int64_t TicksNs() { | 
|  | auto& singleton = Singleton(); | 
|  | int64_t result = 0; | 
|  | LARGE_INTEGER qpcnt; | 
|  | QueryPerformanceCounter(&qpcnt); | 
|  | result = rtc::dchecked_cast<int64_t>( | 
|  | (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 / | 
|  | rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) * | 
|  | 10000); | 
|  | result = singleton.app_start_time_ns_ + result - | 
|  | singleton.time_since_os_start_ns_; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | private: | 
|  | TimeHelper() { | 
|  | TIME_ZONE_INFORMATION time_zone; | 
|  | GetTimeZoneInformation(&time_zone); | 
|  | int64_t time_zone_bias_ns = | 
|  | rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000; | 
|  | FILETIME ft; | 
|  | // This will give us system file in UTC format. | 
|  | GetSystemTimeAsFileTime(&ft); | 
|  | LARGE_INTEGER li; | 
|  | li.HighPart = ft.dwHighDateTime; | 
|  | li.LowPart = ft.dwLowDateTime; | 
|  |  | 
|  | app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 - | 
|  | time_zone_bias_ns; | 
|  |  | 
|  | UpdateReferenceTime(); | 
|  | } | 
|  |  | 
|  | static TimeHelper& Singleton() { | 
|  | static TimeHelper singleton; | 
|  | return singleton; | 
|  | } | 
|  |  | 
|  | void UpdateReferenceTime() { | 
|  | LARGE_INTEGER qpfreq; | 
|  | QueryPerformanceFrequency(&qpfreq); | 
|  | os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart); | 
|  |  | 
|  | LARGE_INTEGER qpcnt; | 
|  | QueryPerformanceCounter(&qpcnt); | 
|  | time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>( | 
|  | (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 / | 
|  | rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) * | 
|  | 10000); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static constexpr uint64_t kFileTimeToUnixTimeEpochOffset = | 
|  | 116444736000000000ULL; | 
|  | static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L; | 
|  |  | 
|  | // The number of nanoseconds since unix system epoch | 
|  | int64_t app_start_time_ns_; | 
|  | // The number of nanoseconds since the OS started | 
|  | int64_t time_since_os_start_ns_; | 
|  | // The OS calculated ticks per second | 
|  | int64_t os_ticks_per_second_; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void SyncWithNtp(int64_t time_from_ntp_server_ms) { | 
|  | TimeHelper::SyncWithNtp(time_from_ntp_server_ms); | 
|  | } | 
|  |  | 
|  | int64_t WinUwpSystemTimeNanos() { | 
|  | return TimeHelper::TicksNs(); | 
|  | } | 
|  |  | 
|  | #endif  // defined(WINUWP) | 
|  |  | 
|  | int64_t SystemTimeMillis() { | 
|  | return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec); | 
|  | } | 
|  |  | 
|  | int64_t TimeNanos() { | 
|  | if (g_clock) { | 
|  | return g_clock->TimeNanos(); | 
|  | } | 
|  | return SystemTimeNanos(); | 
|  | } | 
|  |  | 
|  | uint32_t Time32() { | 
|  | return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec); | 
|  | } | 
|  |  | 
|  | int64_t TimeMillis() { | 
|  | return TimeNanos() / kNumNanosecsPerMillisec; | 
|  | } | 
|  |  | 
|  | int64_t TimeMicros() { | 
|  | return TimeNanos() / kNumNanosecsPerMicrosec; | 
|  | } | 
|  |  | 
|  | int64_t TimeAfter(int64_t elapsed) { | 
|  | RTC_DCHECK_GE(elapsed, 0); | 
|  | return TimeMillis() + elapsed; | 
|  | } | 
|  |  | 
|  | int32_t TimeDiff32(uint32_t later, uint32_t earlier) { | 
|  | return later - earlier; | 
|  | } | 
|  |  | 
|  | int64_t TimeDiff(int64_t later, int64_t earlier) { | 
|  | return later - earlier; | 
|  | } | 
|  |  | 
|  | TimestampWrapAroundHandler::TimestampWrapAroundHandler() | 
|  | : last_ts_(0), num_wrap_(-1) {} | 
|  |  | 
|  | int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { | 
|  | if (num_wrap_ == -1) { | 
|  | last_ts_ = ts; | 
|  | num_wrap_ = 0; | 
|  | return ts; | 
|  | } | 
|  |  | 
|  | if (ts < last_ts_) { | 
|  | if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) | 
|  | ++num_wrap_; | 
|  | } else if ((ts - last_ts_) > 0xf0000000) { | 
|  | // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. | 
|  | return ts + (num_wrap_ - 1) * (int64_t{1} << 32); | 
|  | } | 
|  |  | 
|  | last_ts_ = ts; | 
|  | return ts + (num_wrap_ << 32); | 
|  | } | 
|  |  | 
|  | int64_t TmToSeconds(const tm& tm) { | 
|  | static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | 
|  | static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151, | 
|  | 181, 212, 243, 273, 304, 334}; | 
|  | int year = tm.tm_year + 1900; | 
|  | int month = tm.tm_mon; | 
|  | int day = tm.tm_mday - 1;  // Make 0-based like the rest. | 
|  | int hour = tm.tm_hour; | 
|  | int min = tm.tm_min; | 
|  | int sec = tm.tm_sec; | 
|  |  | 
|  | bool expiry_in_leap_year = | 
|  | (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); | 
|  |  | 
|  | if (year < 1970) | 
|  | return -1; | 
|  | if (month < 0 || month > 11) | 
|  | return -1; | 
|  | if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) | 
|  | return -1; | 
|  | if (hour < 0 || hour > 23) | 
|  | return -1; | 
|  | if (min < 0 || min > 59) | 
|  | return -1; | 
|  | if (sec < 0 || sec > 59) | 
|  | return -1; | 
|  |  | 
|  | day += cumul_mdays[month]; | 
|  |  | 
|  | // Add number of leap days between 1970 and the expiration year, inclusive. | 
|  | day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + | 
|  | (year / 400 - 1970 / 400)); | 
|  |  | 
|  | // We will have added one day too much above if expiration is during a leap | 
|  | // year, and expiration is in January or February. | 
|  | if (expiry_in_leap_year && month <= 2 - 1)  // |month| is zero based. | 
|  | day -= 1; | 
|  |  | 
|  | // Combine all variables into seconds from 1970-01-01 00:00 (except |month| | 
|  | // which was accumulated into |day| above). | 
|  | return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 + | 
|  | min) * | 
|  | 60 + | 
|  | sec; | 
|  | } | 
|  |  | 
|  | int64_t TimeUTCMicros() { | 
|  | if (g_clock) { | 
|  | return g_clock->TimeNanos() / kNumNanosecsPerMicrosec; | 
|  | } | 
|  | #if defined(WEBRTC_POSIX) | 
|  | struct timeval time; | 
|  | gettimeofday(&time, nullptr); | 
|  | // Convert from second (1.0) and microsecond (1e-6). | 
|  | return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec + | 
|  | time.tv_usec); | 
|  |  | 
|  | #elif defined(WEBRTC_WIN) | 
|  | struct _timeb time; | 
|  | _ftime(&time); | 
|  | // Convert from second (1.0) and milliseconds (1e-3). | 
|  | return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec + | 
|  | static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int64_t TimeUTCMillis() { | 
|  | return TimeUTCMicros() / kNumMicrosecsPerMillisec; | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |