| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * The core AEC algorithm, which is presented with time-aligned signals. |
| */ |
| |
| #include "webrtc/modules/audio_processing/aec/aec_core.h" |
| |
| #include <algorithm> |
| #include <math.h> |
| #include <stddef.h> // size_t |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "webrtc/rtc_base/checks.h" |
| extern "C" { |
| #include "webrtc/common_audio/ring_buffer.h" |
| } |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| #include "webrtc/modules/audio_processing/aec/aec_common.h" |
| #include "webrtc/modules/audio_processing/aec/aec_core_optimized_methods.h" |
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
| #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h" |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/system_wrappers/include/cpu_features_wrapper.h" |
| #include "webrtc/system_wrappers/include/metrics.h" |
| #include "webrtc/typedefs.h" |
| |
| namespace webrtc { |
| namespace { |
| enum class DelaySource { |
| kSystemDelay, // The delay values come from the OS. |
| kDelayAgnostic, // The delay values come from the DA-AEC. |
| }; |
| |
| constexpr int kMinDelayLogValue = -200; |
| constexpr int kMaxDelayLogValue = 200; |
| constexpr int kNumDelayLogBuckets = 100; |
| |
| void MaybeLogDelayAdjustment(int moved_ms, DelaySource source) { |
| if (moved_ms == 0) |
| return; |
| switch (source) { |
| case DelaySource::kSystemDelay: |
| RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecDelayAdjustmentMsSystemValue", |
| moved_ms, kMinDelayLogValue, kMaxDelayLogValue, |
| kNumDelayLogBuckets); |
| return; |
| case DelaySource::kDelayAgnostic: |
| RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecDelayAdjustmentMsAgnosticValue", |
| moved_ms, kMinDelayLogValue, kMaxDelayLogValue, |
| kNumDelayLogBuckets); |
| return; |
| } |
| } |
| } // namespace |
| |
| // Buffer size (samples) |
| static const size_t kBufferSizeBlocks = 250; // 1 second of audio in 16 kHz. |
| |
| // Metrics |
| static const size_t kSubCountLen = 4; |
| static const size_t kCountLen = 50; |
| static const int kDelayMetricsAggregationWindow = 1250; // 5 seconds at 16 kHz. |
| |
| // Divergence metric is based on audio level, which gets updated every |
| // |kSubCountLen + 1| * PART_LEN samples. Divergence metric takes the statistics |
| // of |kDivergentFilterFractionAggregationWindowSize| audio levels. The |
| // following value corresponds to 1 second at 16 kHz. |
| static const int kDivergentFilterFractionAggregationWindowSize = 50; |
| |
| // Quantities to control H band scaling for SWB input |
| static const float cnScaleHband = 0.4f; // scale for comfort noise in H band. |
| // Initial bin for averaging nlp gain in low band |
| static const int freqAvgIc = PART_LEN / 2; |
| |
| // Matlab code to produce table: |
| // win = sqrt(hanning(63)); win = [0 ; win(1:32)]; |
| // fprintf(1, '\t%.14f, %.14f, %.14f,\n', win); |
| ALIGN16_BEG const float ALIGN16_END WebRtcAec_sqrtHanning[65] = { |
| 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f, |
| 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f, |
| 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f, |
| 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f, |
| 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f, |
| 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f, |
| 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f, |
| 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f, |
| 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f, |
| 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f, |
| 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f, |
| 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f, |
| 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f, |
| 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f, |
| 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f, |
| 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f, |
| 1.00000000000000f}; |
| |
| // Matlab code to produce table: |
| // weightCurve = [0 ; 0.3 * sqrt(linspace(0,1,64))' + 0.1]; |
| // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', weightCurve); |
| ALIGN16_BEG const float ALIGN16_END WebRtcAec_weightCurve[65] = { |
| 0.0000f, 0.1000f, 0.1378f, 0.1535f, 0.1655f, 0.1756f, 0.1845f, 0.1926f, |
| 0.2000f, 0.2069f, 0.2134f, 0.2195f, 0.2254f, 0.2309f, 0.2363f, 0.2414f, |
| 0.2464f, 0.2512f, 0.2558f, 0.2604f, 0.2648f, 0.2690f, 0.2732f, 0.2773f, |
| 0.2813f, 0.2852f, 0.2890f, 0.2927f, 0.2964f, 0.3000f, 0.3035f, 0.3070f, |
| 0.3104f, 0.3138f, 0.3171f, 0.3204f, 0.3236f, 0.3268f, 0.3299f, 0.3330f, |
| 0.3360f, 0.3390f, 0.3420f, 0.3449f, 0.3478f, 0.3507f, 0.3535f, 0.3563f, |
| 0.3591f, 0.3619f, 0.3646f, 0.3673f, 0.3699f, 0.3726f, 0.3752f, 0.3777f, |
| 0.3803f, 0.3828f, 0.3854f, 0.3878f, 0.3903f, 0.3928f, 0.3952f, 0.3976f, |
| 0.4000f}; |
| |
| // Matlab code to produce table: |
| // overDriveCurve = [sqrt(linspace(0,1,65))' + 1]; |
| // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', overDriveCurve); |
| ALIGN16_BEG const float ALIGN16_END WebRtcAec_overDriveCurve[65] = { |
| 1.0000f, 1.1250f, 1.1768f, 1.2165f, 1.2500f, 1.2795f, 1.3062f, 1.3307f, |
| 1.3536f, 1.3750f, 1.3953f, 1.4146f, 1.4330f, 1.4507f, 1.4677f, 1.4841f, |
| 1.5000f, 1.5154f, 1.5303f, 1.5449f, 1.5590f, 1.5728f, 1.5863f, 1.5995f, |
| 1.6124f, 1.6250f, 1.6374f, 1.6495f, 1.6614f, 1.6731f, 1.6847f, 1.6960f, |
| 1.7071f, 1.7181f, 1.7289f, 1.7395f, 1.7500f, 1.7603f, 1.7706f, 1.7806f, |
| 1.7906f, 1.8004f, 1.8101f, 1.8197f, 1.8292f, 1.8385f, 1.8478f, 1.8570f, |
| 1.8660f, 1.8750f, 1.8839f, 1.8927f, 1.9014f, 1.9100f, 1.9186f, 1.9270f, |
| 1.9354f, 1.9437f, 1.9520f, 1.9601f, 1.9682f, 1.9763f, 1.9843f, 1.9922f, |
| 2.0000f}; |
| |
| // Delay Agnostic AEC parameters, still under development and may change. |
| static const float kDelayQualityThresholdMax = 0.07f; |
| static const float kDelayQualityThresholdMin = 0.01f; |
| static const int kInitialShiftOffset = 5; |
| #if !defined(WEBRTC_ANDROID) |
| static const int kDelayCorrectionStart = 1500; // 10 ms chunks |
| #endif |
| |
| // Target suppression levels for nlp modes. |
| // log{0.001, 0.00001, 0.00000001} |
| static const float kTargetSupp[3] = {-6.9f, -11.5f, -18.4f}; |
| |
| // Two sets of parameters, one for the extended filter mode. |
| static const float kExtendedMinOverDrive[3] = {3.0f, 6.0f, 15.0f}; |
| static const float kNormalMinOverDrive[3] = {1.0f, 2.0f, 5.0f}; |
| const float WebRtcAec_kExtendedSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, |
| {0.92f, 0.08f}}; |
| const float WebRtcAec_kNormalSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, |
| {0.93f, 0.07f}}; |
| |
| // Number of partitions forming the NLP's "preferred" bands. |
| enum { kPrefBandSize = 24 }; |
| |
| WebRtcAecFilterFar WebRtcAec_FilterFar; |
| WebRtcAecScaleErrorSignal WebRtcAec_ScaleErrorSignal; |
| WebRtcAecFilterAdaptation WebRtcAec_FilterAdaptation; |
| WebRtcAecOverdrive WebRtcAec_Overdrive; |
| WebRtcAecSuppress WebRtcAec_Suppress; |
| WebRtcAecComputeCoherence WebRtcAec_ComputeCoherence; |
| WebRtcAecUpdateCoherenceSpectra WebRtcAec_UpdateCoherenceSpectra; |
| WebRtcAecStoreAsComplex WebRtcAec_StoreAsComplex; |
| WebRtcAecPartitionDelay WebRtcAec_PartitionDelay; |
| WebRtcAecWindowData WebRtcAec_WindowData; |
| |
| __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { |
| return aRe * bRe - aIm * bIm; |
| } |
| |
| __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { |
| return aRe * bIm + aIm * bRe; |
| } |
| |
| // TODO(minyue): Due to a legacy bug, |framelevel| and |averagelevel| use a |
| // window, of which the length is 1 unit longer than indicated. Remove "+1" when |
| // the code is refactored. |
| PowerLevel::PowerLevel() |
| : framelevel(kSubCountLen + 1), |
| averagelevel(kCountLen + 1) { |
| } |
| |
| BlockBuffer::BlockBuffer() { |
| buffer_ = WebRtc_CreateBuffer(kBufferSizeBlocks, sizeof(float) * PART_LEN); |
| RTC_CHECK(buffer_); |
| ReInit(); |
| } |
| |
| BlockBuffer::~BlockBuffer() { |
| WebRtc_FreeBuffer(buffer_); |
| } |
| |
| void BlockBuffer::ReInit() { |
| WebRtc_InitBuffer(buffer_); |
| } |
| |
| void BlockBuffer::Insert(const float block[PART_LEN]) { |
| WebRtc_WriteBuffer(buffer_, block, 1); |
| } |
| |
| void BlockBuffer::ExtractExtendedBlock(float extended_block[PART_LEN2]) { |
| float* block_ptr = NULL; |
| RTC_DCHECK_LT(0, AvaliableSpace()); |
| |
| // Extract the previous block. |
| WebRtc_MoveReadPtr(buffer_, -1); |
| size_t read_elements = WebRtc_ReadBuffer( |
| buffer_, reinterpret_cast<void**>(&block_ptr), &extended_block[0], 1); |
| if (read_elements == 0u) { |
| std::fill_n(&extended_block[0], PART_LEN, 0.0f); |
| } else if (block_ptr != &extended_block[0]) { |
| memcpy(&extended_block[0], block_ptr, PART_LEN * sizeof(float)); |
| } |
| |
| // Extract the current block. |
| read_elements = |
| WebRtc_ReadBuffer(buffer_, reinterpret_cast<void**>(&block_ptr), |
| &extended_block[PART_LEN], 1); |
| if (read_elements == 0u) { |
| std::fill_n(&extended_block[PART_LEN], PART_LEN, 0.0f); |
| } else if (block_ptr != &extended_block[PART_LEN]) { |
| memcpy(&extended_block[PART_LEN], block_ptr, PART_LEN * sizeof(float)); |
| } |
| } |
| |
| int BlockBuffer::AdjustSize(int buffer_size_decrease) { |
| return WebRtc_MoveReadPtr(buffer_, buffer_size_decrease); |
| } |
| |
| size_t BlockBuffer::Size() { |
| return static_cast<int>(WebRtc_available_read(buffer_)); |
| } |
| |
| size_t BlockBuffer::AvaliableSpace() { |
| return WebRtc_available_write(buffer_); |
| } |
| |
| DivergentFilterFraction::DivergentFilterFraction() |
| : count_(0), |
| occurrence_(0), |
| fraction_(-1.0) { |
| } |
| |
| void DivergentFilterFraction::Reset() { |
| Clear(); |
| fraction_ = -1.0; |
| } |
| |
| void DivergentFilterFraction::AddObservation(const PowerLevel& nearlevel, |
| const PowerLevel& linoutlevel, |
| const PowerLevel& nlpoutlevel) { |
| const float near_level = nearlevel.framelevel.GetLatestMean(); |
| const float level_increase = |
| linoutlevel.framelevel.GetLatestMean() - near_level; |
| const bool output_signal_active = nlpoutlevel.framelevel.GetLatestMean() > |
| 40.0 * nlpoutlevel.minlevel; |
| // Level increase should be, in principle, negative, when the filter |
| // does not diverge. Here we allow some margin (0.01 * near end level) and |
| // numerical error (1.0). We count divergence only when the AEC output |
| // signal is active. |
| if (output_signal_active && |
| level_increase > std::max(0.01 * near_level, 1.0)) |
| occurrence_++; |
| ++count_; |
| if (count_ == kDivergentFilterFractionAggregationWindowSize) { |
| fraction_ = static_cast<float>(occurrence_) / |
| kDivergentFilterFractionAggregationWindowSize; |
| Clear(); |
| } |
| } |
| |
| float DivergentFilterFraction::GetLatestFraction() const { |
| return fraction_; |
| } |
| |
| void DivergentFilterFraction::Clear() { |
| count_ = 0; |
| occurrence_ = 0; |
| } |
| |
| // TODO(minyue): Moving some initialization from WebRtcAec_CreateAec() to ctor. |
| AecCore::AecCore(int instance_index) |
| : data_dumper(new ApmDataDumper(instance_index)) {} |
| |
| AecCore::~AecCore() {} |
| |
| static int CmpFloat(const void* a, const void* b) { |
| const float* da = (const float*)a; |
| const float* db = (const float*)b; |
| |
| return (*da > *db) - (*da < *db); |
| } |
| |
| static void FilterFar(int num_partitions, |
| int x_fft_buf_block_pos, |
| float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| float y_fft[2][PART_LEN1]) { |
| int i; |
| for (i = 0; i < num_partitions; i++) { |
| int j; |
| int xPos = (i + x_fft_buf_block_pos) * PART_LEN1; |
| int pos = i * PART_LEN1; |
| // Check for wrap |
| if (i + x_fft_buf_block_pos >= num_partitions) { |
| xPos -= num_partitions * (PART_LEN1); |
| } |
| |
| for (j = 0; j < PART_LEN1; j++) { |
| y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
| h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
| y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j], |
| h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]); |
| } |
| } |
| } |
| |
| static void ScaleErrorSignal(float mu, |
| float error_threshold, |
| float x_pow[PART_LEN1], |
| float ef[2][PART_LEN1]) { |
| int i; |
| float abs_ef; |
| for (i = 0; i < (PART_LEN1); i++) { |
| ef[0][i] /= (x_pow[i] + 1e-10f); |
| ef[1][i] /= (x_pow[i] + 1e-10f); |
| abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); |
| |
| if (abs_ef > error_threshold) { |
| abs_ef = error_threshold / (abs_ef + 1e-10f); |
| ef[0][i] *= abs_ef; |
| ef[1][i] *= abs_ef; |
| } |
| |
| // Stepsize factor |
| ef[0][i] *= mu; |
| ef[1][i] *= mu; |
| } |
| } |
| |
| static void FilterAdaptation( |
| const OouraFft& ooura_fft, |
| int num_partitions, |
| int x_fft_buf_block_pos, |
| float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1], |
| float e_fft[2][PART_LEN1], |
| float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) { |
| int i, j; |
| float fft[PART_LEN2]; |
| for (i = 0; i < num_partitions; i++) { |
| int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1); |
| int pos; |
| // Check for wrap |
| if (i + x_fft_buf_block_pos >= num_partitions) { |
| xPos -= num_partitions * PART_LEN1; |
| } |
| |
| pos = i * PART_LEN1; |
| |
| for (j = 0; j < PART_LEN; j++) { |
| fft[2 * j] = MulRe(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j], |
| e_fft[0][j], e_fft[1][j]); |
| fft[2 * j + 1] = MulIm(x_fft_buf[0][xPos + j], -x_fft_buf[1][xPos + j], |
| e_fft[0][j], e_fft[1][j]); |
| } |
| fft[1] = |
| MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN], |
| e_fft[0][PART_LEN], e_fft[1][PART_LEN]); |
| |
| ooura_fft.InverseFft(fft); |
| memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); |
| |
| // fft scaling |
| { |
| float scale = 2.0f / PART_LEN2; |
| for (j = 0; j < PART_LEN; j++) { |
| fft[j] *= scale; |
| } |
| } |
| ooura_fft.Fft(fft); |
| |
| h_fft_buf[0][pos] += fft[0]; |
| h_fft_buf[0][pos + PART_LEN] += fft[1]; |
| |
| for (j = 1; j < PART_LEN; j++) { |
| h_fft_buf[0][pos + j] += fft[2 * j]; |
| h_fft_buf[1][pos + j] += fft[2 * j + 1]; |
| } |
| } |
| } |
| |
| static void Overdrive(float overdrive_scaling, |
| const float hNlFb, |
| float hNl[PART_LEN1]) { |
| for (int i = 0; i < PART_LEN1; ++i) { |
| // Weight subbands |
| if (hNl[i] > hNlFb) { |
| hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + |
| (1 - WebRtcAec_weightCurve[i]) * hNl[i]; |
| } |
| hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]); |
| } |
| } |
| |
| static void Suppress(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) { |
| for (int i = 0; i < PART_LEN1; ++i) { |
| // Suppress error signal |
| efw[0][i] *= hNl[i]; |
| efw[1][i] *= hNl[i]; |
| |
| // Ooura fft returns incorrect sign on imaginary component. It matters here |
| // because we are making an additive change with comfort noise. |
| efw[1][i] *= -1; |
| } |
| } |
| |
| static int PartitionDelay(int num_partitions, |
| float h_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1]) { |
| // Measures the energy in each filter partition and returns the partition with |
| // highest energy. |
| // TODO(bjornv): Spread computational cost by computing one partition per |
| // block? |
| float wfEnMax = 0; |
| int i; |
| int delay = 0; |
| |
| for (i = 0; i < num_partitions; i++) { |
| int j; |
| int pos = i * PART_LEN1; |
| float wfEn = 0; |
| for (j = 0; j < PART_LEN1; j++) { |
| wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] + |
| h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j]; |
| } |
| |
| if (wfEn > wfEnMax) { |
| wfEnMax = wfEn; |
| delay = i; |
| } |
| } |
| return delay; |
| } |
| |
| // Update metric with 10 * log10(numerator / denominator). |
| static void UpdateLogRatioMetric(Stats* metric, float numerator, |
| float denominator) { |
| RTC_DCHECK(metric); |
| RTC_CHECK(numerator >= 0); |
| RTC_CHECK(denominator >= 0); |
| |
| const float log_numerator = log10(numerator + 1e-10f); |
| const float log_denominator = log10(denominator + 1e-10f); |
| metric->instant = 10.0f * (log_numerator - log_denominator); |
| |
| // Max. |
| if (metric->instant > metric->max) |
| metric->max = metric->instant; |
| |
| // Min. |
| if (metric->instant < metric->min) |
| metric->min = metric->instant; |
| |
| // Average. |
| metric->counter++; |
| // This is to protect overflow, which should almost never happen. |
| RTC_CHECK_NE(0, metric->counter); |
| metric->sum += metric->instant; |
| metric->average = metric->sum / metric->counter; |
| |
| // Upper mean. |
| if (metric->instant > metric->average) { |
| metric->hicounter++; |
| // This is to protect overflow, which should almost never happen. |
| RTC_CHECK_NE(0, metric->hicounter); |
| metric->hisum += metric->instant; |
| metric->himean = metric->hisum / metric->hicounter; |
| } |
| } |
| |
| // Threshold to protect against the ill-effects of a zero far-end. |
| const float WebRtcAec_kMinFarendPSD = 15; |
| |
| // Updates the following smoothed Power Spectral Densities (PSD): |
| // - sd : near-end |
| // - se : residual echo |
| // - sx : far-end |
| // - sde : cross-PSD of near-end and residual echo |
| // - sxd : cross-PSD of near-end and far-end |
| // |
| // In addition to updating the PSDs, also the filter diverge state is |
| // determined. |
| static void UpdateCoherenceSpectra(int mult, |
| bool extended_filter_enabled, |
| float efw[2][PART_LEN1], |
| float dfw[2][PART_LEN1], |
| float xfw[2][PART_LEN1], |
| CoherenceState* coherence_state, |
| short* filter_divergence_state, |
| int* extreme_filter_divergence) { |
| // Power estimate smoothing coefficients. |
| const float* ptrGCoh = |
| extended_filter_enabled |
| ? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1] |
| : WebRtcAec_kNormalSmoothingCoefficients[mult - 1]; |
| int i; |
| float sdSum = 0, seSum = 0; |
| |
| for (i = 0; i < PART_LEN1; i++) { |
| coherence_state->sd[i] = |
| ptrGCoh[0] * coherence_state->sd[i] + |
| ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); |
| coherence_state->se[i] = |
| ptrGCoh[0] * coherence_state->se[i] + |
| ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); |
| // We threshold here to protect against the ill-effects of a zero farend. |
| // The threshold is not arbitrarily chosen, but balances protection and |
| // adverse interaction with the algorithm's tuning. |
| // TODO(bjornv): investigate further why this is so sensitive. |
| coherence_state->sx[i] = |
| ptrGCoh[0] * coherence_state->sx[i] + |
| ptrGCoh[1] * |
| WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], |
| WebRtcAec_kMinFarendPSD); |
| |
| coherence_state->sde[i][0] = |
| ptrGCoh[0] * coherence_state->sde[i][0] + |
| ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); |
| coherence_state->sde[i][1] = |
| ptrGCoh[0] * coherence_state->sde[i][1] + |
| ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); |
| |
| coherence_state->sxd[i][0] = |
| ptrGCoh[0] * coherence_state->sxd[i][0] + |
| ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); |
| coherence_state->sxd[i][1] = |
| ptrGCoh[0] * coherence_state->sxd[i][1] + |
| ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); |
| |
| sdSum += coherence_state->sd[i]; |
| seSum += coherence_state->se[i]; |
| } |
| |
| // Divergent filter safeguard update. |
| *filter_divergence_state = |
| (*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum; |
| |
| // Signal extreme filter divergence if the error is significantly larger |
| // than the nearend (13 dB). |
| *extreme_filter_divergence = (seSum > (19.95f * sdSum)); |
| } |
| |
| // Window time domain data to be used by the fft. |
| __inline static void WindowData(float* x_windowed, const float* x) { |
| int i; |
| for (i = 0; i < PART_LEN; i++) { |
| x_windowed[i] = x[i] * WebRtcAec_sqrtHanning[i]; |
| x_windowed[PART_LEN + i] = |
| x[PART_LEN + i] * WebRtcAec_sqrtHanning[PART_LEN - i]; |
| } |
| } |
| |
| // Puts fft output data into a complex valued array. |
| __inline static void StoreAsComplex(const float* data, |
| float data_complex[2][PART_LEN1]) { |
| int i; |
| data_complex[0][0] = data[0]; |
| data_complex[1][0] = 0; |
| for (i = 1; i < PART_LEN; i++) { |
| data_complex[0][i] = data[2 * i]; |
| data_complex[1][i] = data[2 * i + 1]; |
| } |
| data_complex[0][PART_LEN] = data[1]; |
| data_complex[1][PART_LEN] = 0; |
| } |
| |
| static void ComputeCoherence(const CoherenceState* coherence_state, |
| float* cohde, |
| float* cohxd) { |
| // Subband coherence |
| for (int i = 0; i < PART_LEN1; i++) { |
| cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] + |
| coherence_state->sde[i][1] * coherence_state->sde[i][1]) / |
| (coherence_state->sd[i] * coherence_state->se[i] + 1e-10f); |
| cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] + |
| coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) / |
| (coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f); |
| } |
| } |
| |
| static void GetHighbandGain(const float* lambda, float* nlpGainHband) { |
| int i; |
| |
| *nlpGainHband = 0.0f; |
| for (i = freqAvgIc; i < PART_LEN1 - 1; i++) { |
| *nlpGainHband += lambda[i]; |
| } |
| *nlpGainHband /= static_cast<float>(PART_LEN1 - 1 - freqAvgIc); |
| } |
| |
| static void GenerateComplexNoise(uint32_t* seed, float noise[2][PART_LEN1]) { |
| const float kPi2 = 6.28318530717959f; |
| int16_t randW16[PART_LEN]; |
| WebRtcSpl_RandUArray(randW16, PART_LEN, seed); |
| |
| noise[0][0] = 0; |
| noise[1][0] = 0; |
| for (size_t i = 1; i < PART_LEN1; i++) { |
| float tmp = kPi2 * randW16[i - 1] / 32768.f; |
| noise[0][i] = cosf(tmp); |
| noise[1][i] = -sinf(tmp); |
| } |
| noise[1][PART_LEN] = 0; |
| } |
| |
| static void ComfortNoise(bool generate_high_frequency_noise, |
| uint32_t* seed, |
| float e_fft[2][PART_LEN1], |
| float high_frequency_comfort_noise[2][PART_LEN1], |
| const float* noise_spectrum, |
| const float* suppressor_gain) { |
| float complex_noise[2][PART_LEN1]; |
| |
| GenerateComplexNoise(seed, complex_noise); |
| |
| // Shape, scale and add comfort noise. |
| for (int i = 1; i < PART_LEN1; ++i) { |
| float noise_scaling = |
| sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0)) * |
| sqrtf(noise_spectrum[i]); |
| e_fft[0][i] += noise_scaling * complex_noise[0][i]; |
| e_fft[1][i] += noise_scaling * complex_noise[1][i]; |
| } |
| |
| // Form comfort noise for higher frequencies. |
| if (generate_high_frequency_noise) { |
| // Compute average noise power and nlp gain over the second half of freq |
| // spectrum (i.e., 4->8khz). |
| int start_avg_band = PART_LEN1 / 2; |
| float upper_bands_noise_power = 0.f; |
| float upper_bands_suppressor_gain = 0.f; |
| for (int i = start_avg_band; i < PART_LEN1; ++i) { |
| upper_bands_noise_power += sqrtf(noise_spectrum[i]); |
| upper_bands_suppressor_gain += |
| sqrtf(WEBRTC_SPL_MAX(1 - suppressor_gain[i] * suppressor_gain[i], 0)); |
| } |
| upper_bands_noise_power /= (PART_LEN1 - start_avg_band); |
| upper_bands_suppressor_gain /= (PART_LEN1 - start_avg_band); |
| |
| // Shape, scale and add comfort noise. |
| float noise_scaling = upper_bands_suppressor_gain * upper_bands_noise_power; |
| high_frequency_comfort_noise[0][0] = 0; |
| high_frequency_comfort_noise[1][0] = 0; |
| for (int i = 1; i < PART_LEN1; ++i) { |
| high_frequency_comfort_noise[0][i] = noise_scaling * complex_noise[0][i]; |
| high_frequency_comfort_noise[1][i] = noise_scaling * complex_noise[1][i]; |
| } |
| high_frequency_comfort_noise[1][PART_LEN] = 0; |
| } else { |
| memset(high_frequency_comfort_noise, 0, |
| 2 * PART_LEN1 * sizeof(high_frequency_comfort_noise[0][0])); |
| } |
| } |
| |
| static void InitLevel(PowerLevel* level) { |
| const float kBigFloat = 1E17f; |
| level->averagelevel.Reset(); |
| level->framelevel.Reset(); |
| level->minlevel = kBigFloat; |
| } |
| |
| static void InitStats(Stats* stats) { |
| stats->instant = kOffsetLevel; |
| stats->average = kOffsetLevel; |
| stats->max = kOffsetLevel; |
| stats->min = kOffsetLevel * (-1); |
| stats->sum = 0; |
| stats->hisum = 0; |
| stats->himean = kOffsetLevel; |
| stats->counter = 0; |
| stats->hicounter = 0; |
| } |
| |
| static void InitMetrics(AecCore* self) { |
| self->stateCounter = 0; |
| InitLevel(&self->farlevel); |
| InitLevel(&self->nearlevel); |
| InitLevel(&self->linoutlevel); |
| InitLevel(&self->nlpoutlevel); |
| |
| InitStats(&self->erl); |
| InitStats(&self->erle); |
| InitStats(&self->aNlp); |
| InitStats(&self->rerl); |
| |
| self->divergent_filter_fraction.Reset(); |
| } |
| |
| static float CalculatePower(const float* in, size_t num_samples) { |
| size_t k; |
| float energy = 0.0f; |
| |
| for (k = 0; k < num_samples; ++k) { |
| energy += in[k] * in[k]; |
| } |
| return energy / num_samples; |
| } |
| |
| static void UpdateLevel(PowerLevel* level, float power) { |
| level->framelevel.AddValue(power); |
| if (level->framelevel.EndOfBlock()) { |
| const float new_frame_level = level->framelevel.GetLatestMean(); |
| if (new_frame_level > 0) { |
| if (new_frame_level < level->minlevel) { |
| level->minlevel = new_frame_level; // New minimum. |
| } else { |
| level->minlevel *= (1 + 0.001f); // Small increase. |
| } |
| } |
| level->averagelevel.AddValue(new_frame_level); |
| } |
| } |
| |
| static void UpdateMetrics(AecCore* aec) { |
| const float actThresholdNoisy = 8.0f; |
| const float actThresholdClean = 40.0f; |
| |
| const float noisyPower = 300000.0f; |
| |
| float actThreshold; |
| |
| if (aec->echoState) { // Check if echo is likely present |
| aec->stateCounter++; |
| } |
| |
| if (aec->linoutlevel.framelevel.EndOfBlock()) { |
| aec->divergent_filter_fraction.AddObservation(aec->nearlevel, |
| aec->linoutlevel, |
| aec->nlpoutlevel); |
| } |
| |
| if (aec->farlevel.averagelevel.EndOfBlock()) { |
| if (aec->farlevel.minlevel < noisyPower) { |
| actThreshold = actThresholdClean; |
| } else { |
| actThreshold = actThresholdNoisy; |
| } |
| |
| const float far_average_level = aec->farlevel.averagelevel.GetLatestMean(); |
| |
| // The last condition is to let estimation be made in active far-end |
| // segments only. |
| if ((aec->stateCounter > (0.5f * kCountLen * kSubCountLen)) && |
| (aec->farlevel.framelevel.EndOfBlock()) && |
| (far_average_level > (actThreshold * aec->farlevel.minlevel))) { |
| |
| // ERL: error return loss. |
| const float near_average_level = |
| aec->nearlevel.averagelevel.GetLatestMean(); |
| UpdateLogRatioMetric(&aec->erl, far_average_level, near_average_level); |
| |
| // A_NLP: error return loss enhanced before the nonlinear suppression. |
| const float linout_average_level = |
| aec->linoutlevel.averagelevel.GetLatestMean(); |
| UpdateLogRatioMetric(&aec->aNlp, near_average_level, |
| linout_average_level); |
| |
| // ERLE: error return loss enhanced. |
| const float nlpout_average_level = |
| aec->nlpoutlevel.averagelevel.GetLatestMean(); |
| UpdateLogRatioMetric(&aec->erle, near_average_level, |
| nlpout_average_level); |
| } |
| |
| aec->stateCounter = 0; |
| } |
| } |
| |
| static void UpdateDelayMetrics(AecCore* self) { |
| int i = 0; |
| int delay_values = 0; |
| int median = 0; |
| int lookahead = WebRtc_lookahead(self->delay_estimator); |
| const int kMsPerBlock = PART_LEN / (self->mult * 8); |
| int64_t l1_norm = 0; |
| |
| if (self->num_delay_values == 0) { |
| // We have no new delay value data. Even though -1 is a valid |median| in |
| // the sense that we allow negative values, it will practically never be |
| // used since multiples of |kMsPerBlock| will always be returned. |
| // We therefore use -1 to indicate in the logs that the delay estimator was |
| // not able to estimate the delay. |
| self->delay_median = -1; |
| self->delay_std = -1; |
| self->fraction_poor_delays = -1; |
| return; |
| } |
| |
| // Start value for median count down. |
| delay_values = self->num_delay_values >> 1; |
| // Get median of delay values since last update. |
| for (i = 0; i < kHistorySizeBlocks; i++) { |
| delay_values -= self->delay_histogram[i]; |
| if (delay_values < 0) { |
| median = i; |
| break; |
| } |
| } |
| // Account for lookahead. |
| self->delay_median = (median - lookahead) * kMsPerBlock; |
| |
| // Calculate the L1 norm, with median value as central moment. |
| for (i = 0; i < kHistorySizeBlocks; i++) { |
| l1_norm += abs(i - median) * self->delay_histogram[i]; |
| } |
| self->delay_std = |
| static_cast<int>((l1_norm + self->num_delay_values / 2) / |
| self->num_delay_values) * kMsPerBlock; |
| |
| // Determine fraction of delays that are out of bounds, that is, either |
| // negative (anti-causal system) or larger than the AEC filter length. |
| { |
| int num_delays_out_of_bounds = self->num_delay_values; |
| const int histogram_length = |
| sizeof(self->delay_histogram) / sizeof(self->delay_histogram[0]); |
| for (i = lookahead; i < lookahead + self->num_partitions; ++i) { |
| if (i < histogram_length) |
| num_delays_out_of_bounds -= self->delay_histogram[i]; |
| } |
| self->fraction_poor_delays = |
| static_cast<float>(num_delays_out_of_bounds) / self->num_delay_values; |
| } |
| |
| // Reset histogram. |
| memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); |
| self->num_delay_values = 0; |
| } |
| |
| static void ScaledInverseFft(const OouraFft& ooura_fft, |
| float freq_data[2][PART_LEN1], |
| float time_data[PART_LEN2], |
| float scale, |
| int conjugate) { |
| int i; |
| const float normalization = scale / static_cast<float>(PART_LEN2); |
| const float sign = (conjugate ? -1 : 1); |
| time_data[0] = freq_data[0][0] * normalization; |
| time_data[1] = freq_data[0][PART_LEN] * normalization; |
| for (i = 1; i < PART_LEN; i++) { |
| time_data[2 * i] = freq_data[0][i] * normalization; |
| time_data[2 * i + 1] = sign * freq_data[1][i] * normalization; |
| } |
| ooura_fft.InverseFft(time_data); |
| } |
| |
| static void Fft(const OouraFft& ooura_fft, |
| float time_data[PART_LEN2], |
| float freq_data[2][PART_LEN1]) { |
| int i; |
| ooura_fft.Fft(time_data); |
| |
| // Reorder fft output data. |
| freq_data[1][0] = 0; |
| freq_data[1][PART_LEN] = 0; |
| freq_data[0][0] = time_data[0]; |
| freq_data[0][PART_LEN] = time_data[1]; |
| for (i = 1; i < PART_LEN; i++) { |
| freq_data[0][i] = time_data[2 * i]; |
| freq_data[1][i] = time_data[2 * i + 1]; |
| } |
| } |
| |
| static int SignalBasedDelayCorrection(AecCore* self) { |
| int delay_correction = 0; |
| int last_delay = -2; |
| RTC_DCHECK(self); |
| #if !defined(WEBRTC_ANDROID) |
| // On desktops, turn on correction after |kDelayCorrectionStart| frames. This |
| // is to let the delay estimation get a chance to converge. Also, if the |
| // playout audio volume is low (or even muted) the delay estimation can return |
| // a very large delay, which will break the AEC if it is applied. |
| if (self->frame_count < kDelayCorrectionStart) { |
| self->data_dumper->DumpRaw("aec_da_reported_delay", 1, &last_delay); |
| return 0; |
| } |
| #endif |
| |
| // 1. Check for non-negative delay estimate. Note that the estimates we get |
| // from the delay estimation are not compensated for lookahead. Hence, a |
| // negative |last_delay| is an invalid one. |
| // 2. Verify that there is a delay change. In addition, only allow a change |
| // if the delay is outside a certain region taking the AEC filter length |
| // into account. |
| // TODO(bjornv): Investigate if we can remove the non-zero delay change check. |
| // 3. Only allow delay correction if the delay estimation quality exceeds |
| // |delay_quality_threshold|. |
| // 4. Finally, verify that the proposed |delay_correction| is feasible by |
| // comparing with the size of the far-end buffer. |
| last_delay = WebRtc_last_delay(self->delay_estimator); |
| self->data_dumper->DumpRaw("aec_da_reported_delay", 1, &last_delay); |
| if ((last_delay >= 0) && (last_delay != self->previous_delay) && |
| (WebRtc_last_delay_quality(self->delay_estimator) > |
| self->delay_quality_threshold)) { |
| int delay = last_delay - WebRtc_lookahead(self->delay_estimator); |
| // Allow for a slack in the actual delay, defined by a |lower_bound| and an |
| // |upper_bound|. The adaptive echo cancellation filter is currently |
| // |num_partitions| (of 64 samples) long. If the delay estimate is negative |
| // or at least 3/4 of the filter length we open up for correction. |
| const int lower_bound = 0; |
| const int upper_bound = self->num_partitions * 3 / 4; |
| const int do_correction = delay <= lower_bound || delay > upper_bound; |
| if (do_correction == 1) { |
| int available_read = self->farend_block_buffer_.Size(); |
| // With |shift_offset| we gradually rely on the delay estimates. For |
| // positive delays we reduce the correction by |shift_offset| to lower the |
| // risk of pushing the AEC into a non causal state. For negative delays |
| // we rely on the values up to a rounding error, hence compensate by 1 |
| // element to make sure to push the delay into the causal region. |
| delay_correction = -delay; |
| delay_correction += delay > self->shift_offset ? self->shift_offset : 1; |
| self->shift_offset--; |
| self->shift_offset = (self->shift_offset <= 1 ? 1 : self->shift_offset); |
| if (delay_correction > available_read - self->mult - 1) { |
| // There is not enough data in the buffer to perform this shift. Hence, |
| // we do not rely on the delay estimate and do nothing. |
| delay_correction = 0; |
| } else { |
| self->previous_delay = last_delay; |
| ++self->delay_correction_count; |
| } |
| } |
| } |
| // Update the |delay_quality_threshold| once we have our first delay |
| // correction. |
| if (self->delay_correction_count > 0) { |
| float delay_quality = WebRtc_last_delay_quality(self->delay_estimator); |
| delay_quality = |
| (delay_quality > kDelayQualityThresholdMax ? kDelayQualityThresholdMax |
| : delay_quality); |
| self->delay_quality_threshold = |
| (delay_quality > self->delay_quality_threshold |
| ? delay_quality |
| : self->delay_quality_threshold); |
| } |
| self->data_dumper->DumpRaw("aec_da_delay_correction", 1, &delay_correction); |
| |
| return delay_correction; |
| } |
| |
| static void RegressorPower(int num_partitions, |
| int latest_added_partition, |
| float x_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1], |
| float x_pow[PART_LEN1]) { |
| RTC_DCHECK_LT(latest_added_partition, num_partitions); |
| memset(x_pow, 0, PART_LEN1 * sizeof(x_pow[0])); |
| |
| int partition = latest_added_partition; |
| int x_fft_buf_position = partition * PART_LEN1; |
| for (int i = 0; i < num_partitions; ++i) { |
| for (int bin = 0; bin < PART_LEN1; ++bin) { |
| float re = x_fft_buf[0][x_fft_buf_position]; |
| float im = x_fft_buf[1][x_fft_buf_position]; |
| x_pow[bin] += re * re + im * im; |
| ++x_fft_buf_position; |
| } |
| |
| ++partition; |
| if (partition == num_partitions) { |
| partition = 0; |
| RTC_DCHECK_EQ(num_partitions * PART_LEN1, x_fft_buf_position); |
| x_fft_buf_position = 0; |
| } |
| } |
| } |
| |
| static void EchoSubtraction(const OouraFft& ooura_fft, |
| int num_partitions, |
| int extended_filter_enabled, |
| int* extreme_filter_divergence, |
| float filter_step_size, |
| float error_threshold, |
| float* x_fft, |
| int* x_fft_buf_block_pos, |
| float x_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1], |
| float* const y, |
| float x_pow[PART_LEN1], |
| float h_fft_buf[2] |
| [kExtendedNumPartitions * PART_LEN1], |
| float echo_subtractor_output[PART_LEN]) { |
| float s_fft[2][PART_LEN1]; |
| float e_extended[PART_LEN2]; |
| float s_extended[PART_LEN2]; |
| float* s; |
| float e[PART_LEN]; |
| float e_fft[2][PART_LEN1]; |
| int i; |
| |
| // Update the x_fft_buf block position. |
| (*x_fft_buf_block_pos)--; |
| if ((*x_fft_buf_block_pos) == -1) { |
| *x_fft_buf_block_pos = num_partitions - 1; |
| } |
| |
| // Buffer x_fft. |
| memcpy(x_fft_buf[0] + (*x_fft_buf_block_pos) * PART_LEN1, x_fft, |
| sizeof(float) * PART_LEN1); |
| memcpy(x_fft_buf[1] + (*x_fft_buf_block_pos) * PART_LEN1, &x_fft[PART_LEN1], |
| sizeof(float) * PART_LEN1); |
| |
| memset(s_fft, 0, sizeof(s_fft)); |
| |
| // Conditionally reset the echo subtraction filter if the filter has diverged |
| // significantly. |
| if (!extended_filter_enabled && *extreme_filter_divergence) { |
| memset(h_fft_buf, 0, |
| 2 * kExtendedNumPartitions * PART_LEN1 * sizeof(h_fft_buf[0][0])); |
| *extreme_filter_divergence = 0; |
| } |
| |
| // Produce echo estimate s_fft. |
| WebRtcAec_FilterFar(num_partitions, *x_fft_buf_block_pos, x_fft_buf, |
| h_fft_buf, s_fft); |
| |
| // Compute the time-domain echo estimate s. |
| ScaledInverseFft(ooura_fft, s_fft, s_extended, 2.0f, 0); |
| s = &s_extended[PART_LEN]; |
| |
| // Compute the time-domain echo prediction error. |
| for (i = 0; i < PART_LEN; ++i) { |
| e[i] = y[i] - s[i]; |
| } |
| |
| // Compute the frequency domain echo prediction error. |
| memset(e_extended, 0, sizeof(float) * PART_LEN); |
| memcpy(e_extended + PART_LEN, e, sizeof(float) * PART_LEN); |
| Fft(ooura_fft, e_extended, e_fft); |
| |
| // Scale error signal inversely with far power. |
| WebRtcAec_ScaleErrorSignal(filter_step_size, error_threshold, x_pow, e_fft); |
| WebRtcAec_FilterAdaptation(ooura_fft, num_partitions, *x_fft_buf_block_pos, |
| x_fft_buf, e_fft, h_fft_buf); |
| memcpy(echo_subtractor_output, e, sizeof(float) * PART_LEN); |
| } |
| |
| static void FormSuppressionGain(AecCore* aec, |
| float cohde[PART_LEN1], |
| float cohxd[PART_LEN1], |
| float hNl[PART_LEN1]) { |
| float hNlDeAvg, hNlXdAvg; |
| float hNlPref[kPrefBandSize]; |
| float hNlFb = 0, hNlFbLow = 0; |
| const int prefBandSize = kPrefBandSize / aec->mult; |
| const float prefBandQuant = 0.75f, prefBandQuantLow = 0.5f; |
| const int minPrefBand = 4 / aec->mult; |
| // Power estimate smoothing coefficients. |
| const float* min_overdrive = aec->extended_filter_enabled |
| ? kExtendedMinOverDrive |
| : kNormalMinOverDrive; |
| |
| hNlXdAvg = 0; |
| for (int i = minPrefBand; i < prefBandSize + minPrefBand; ++i) { |
| hNlXdAvg += cohxd[i]; |
| } |
| hNlXdAvg /= prefBandSize; |
| hNlXdAvg = 1 - hNlXdAvg; |
| |
| hNlDeAvg = 0; |
| for (int i = minPrefBand; i < prefBandSize + minPrefBand; ++i) { |
| hNlDeAvg += cohde[i]; |
| } |
| hNlDeAvg /= prefBandSize; |
| |
| if (hNlXdAvg < 0.75f && hNlXdAvg < aec->hNlXdAvgMin) { |
| aec->hNlXdAvgMin = hNlXdAvg; |
| } |
| |
| if (hNlDeAvg > 0.98f && hNlXdAvg > 0.9f) { |
| aec->stNearState = 1; |
| } else if (hNlDeAvg < 0.95f || hNlXdAvg < 0.8f) { |
| aec->stNearState = 0; |
| } |
| |
| if (aec->hNlXdAvgMin == 1) { |
| aec->echoState = 0; |
| aec->overDrive = min_overdrive[aec->nlp_mode]; |
| |
| if (aec->stNearState == 1) { |
| memcpy(hNl, cohde, sizeof(hNl[0]) * PART_LEN1); |
| hNlFb = hNlDeAvg; |
| hNlFbLow = hNlDeAvg; |
| } else { |
| for (int i = 0; i < PART_LEN1; ++i) { |
| hNl[i] = 1 - cohxd[i]; |
| } |
| hNlFb = hNlXdAvg; |
| hNlFbLow = hNlXdAvg; |
| } |
| } else { |
| if (aec->stNearState == 1) { |
| aec->echoState = 0; |
| memcpy(hNl, cohde, sizeof(hNl[0]) * PART_LEN1); |
| hNlFb = hNlDeAvg; |
| hNlFbLow = hNlDeAvg; |
| } else { |
| aec->echoState = 1; |
| for (int i = 0; i < PART_LEN1; ++i) { |
| hNl[i] = WEBRTC_SPL_MIN(cohde[i], 1 - cohxd[i]); |
| } |
| |
| // Select an order statistic from the preferred bands. |
| // TODO(peah): Using quicksort now, but a selection algorithm may be |
| // preferred. |
| memcpy(hNlPref, &hNl[minPrefBand], sizeof(float) * prefBandSize); |
| qsort(hNlPref, prefBandSize, sizeof(float), CmpFloat); |
| hNlFb = hNlPref[static_cast<int>(floor(prefBandQuant * |
| (prefBandSize - 1)))]; |
| hNlFbLow = hNlPref[static_cast<int>(floor(prefBandQuantLow * |
| (prefBandSize - 1)))]; |
| } |
| } |
| |
| // Track the local filter minimum to determine suppression overdrive. |
| if (hNlFbLow < 0.6f && hNlFbLow < aec->hNlFbLocalMin) { |
| aec->hNlFbLocalMin = hNlFbLow; |
| aec->hNlFbMin = hNlFbLow; |
| aec->hNlNewMin = 1; |
| aec->hNlMinCtr = 0; |
| } |
| aec->hNlFbLocalMin = |
| WEBRTC_SPL_MIN(aec->hNlFbLocalMin + 0.0008f / aec->mult, 1); |
| aec->hNlXdAvgMin = WEBRTC_SPL_MIN(aec->hNlXdAvgMin + 0.0006f / aec->mult, 1); |
| |
| if (aec->hNlNewMin == 1) { |
| aec->hNlMinCtr++; |
| } |
| if (aec->hNlMinCtr == 2) { |
| aec->hNlNewMin = 0; |
| aec->hNlMinCtr = 0; |
| aec->overDrive = |
| WEBRTC_SPL_MAX(kTargetSupp[aec->nlp_mode] / |
| static_cast<float>(log(aec->hNlFbMin + 1e-10f) + 1e-10f), |
| min_overdrive[aec->nlp_mode]); |
| } |
| |
| // Smooth the overdrive. |
| if (aec->overDrive < aec->overdrive_scaling) { |
| aec->overdrive_scaling = |
| 0.99f * aec->overdrive_scaling + 0.01f * aec->overDrive; |
| } else { |
| aec->overdrive_scaling = |
| 0.9f * aec->overdrive_scaling + 0.1f * aec->overDrive; |
| } |
| |
| // Apply the overdrive. |
| WebRtcAec_Overdrive(aec->overdrive_scaling, hNlFb, hNl); |
| } |
| |
| static void EchoSuppression(const OouraFft& ooura_fft, |
| AecCore* aec, |
| float* nearend_extended_block_lowest_band, |
| float farend_extended_block[PART_LEN2], |
| float* echo_subtractor_output, |
| float output[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { |
| float efw[2][PART_LEN1]; |
| float xfw[2][PART_LEN1]; |
| float dfw[2][PART_LEN1]; |
| float comfortNoiseHband[2][PART_LEN1]; |
| float fft[PART_LEN2]; |
| float nlpGainHband; |
| int i; |
| size_t j; |
| |
| // Coherence and non-linear filter |
| float cohde[PART_LEN1], cohxd[PART_LEN1]; |
| float hNl[PART_LEN1]; |
| |
| // Filter energy |
| const int delayEstInterval = 10 * aec->mult; |
| |
| float* xfw_ptr = NULL; |
| |
| // Update eBuf with echo subtractor output. |
| memcpy(aec->eBuf + PART_LEN, echo_subtractor_output, |
| sizeof(float) * PART_LEN); |
| |
| // Analysis filter banks for the echo suppressor. |
| // Windowed near-end ffts. |
| WindowData(fft, nearend_extended_block_lowest_band); |
| ooura_fft.Fft(fft); |
| StoreAsComplex(fft, dfw); |
| |
| // Windowed echo suppressor output ffts. |
| WindowData(fft, aec->eBuf); |
| ooura_fft.Fft(fft); |
| StoreAsComplex(fft, efw); |
| |
| // NLP |
| |
| // Convert far-end partition to the frequency domain with windowing. |
| WindowData(fft, farend_extended_block); |
| Fft(ooura_fft, fft, xfw); |
| xfw_ptr = &xfw[0][0]; |
| |
| // Buffer far. |
| memcpy(aec->xfwBuf, xfw_ptr, sizeof(float) * 2 * PART_LEN1); |
| |
| aec->delayEstCtr++; |
| if (aec->delayEstCtr == delayEstInterval) { |
| aec->delayEstCtr = 0; |
| aec->delayIdx = WebRtcAec_PartitionDelay(aec->num_partitions, aec->wfBuf); |
| } |
| |
| aec->data_dumper->DumpRaw("aec_nlp_delay", 1, &aec->delayIdx); |
| |
| // Use delayed far. |
| memcpy(xfw, aec->xfwBuf + aec->delayIdx * PART_LEN1, |
| sizeof(xfw[0][0]) * 2 * PART_LEN1); |
| |
| WebRtcAec_UpdateCoherenceSpectra(aec->mult, aec->extended_filter_enabled == 1, |
| efw, dfw, xfw, &aec->coherence_state, |
| &aec->divergeState, |
| &aec->extreme_filter_divergence); |
| |
| WebRtcAec_ComputeCoherence(&aec->coherence_state, cohde, cohxd); |
| |
| // Select the microphone signal as output if the filter is deemed to have |
| // diverged. |
| if (aec->divergeState) { |
| memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1); |
| } |
| |
| FormSuppressionGain(aec, cohde, cohxd, hNl); |
| |
| aec->data_dumper->DumpRaw("aec_nlp_gain", PART_LEN1, hNl); |
| |
| WebRtcAec_Suppress(hNl, efw); |
| |
| // Add comfort noise. |
| ComfortNoise(aec->num_bands > 1, &aec->seed, efw, comfortNoiseHband, |
| aec->noisePow, hNl); |
| |
| // Inverse error fft. |
| ScaledInverseFft(ooura_fft, efw, fft, 2.0f, 1); |
| |
| // Overlap and add to obtain output. |
| for (i = 0; i < PART_LEN; i++) { |
| output[0][i] = (fft[i] * WebRtcAec_sqrtHanning[i] + |
| aec->outBuf[i] * WebRtcAec_sqrtHanning[PART_LEN - i]); |
| |
| // Saturate output to keep it in the allowed range. |
| output[0][i] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, output[0][i], |
| WEBRTC_SPL_WORD16_MIN); |
| } |
| memcpy(aec->outBuf, &fft[PART_LEN], PART_LEN * sizeof(aec->outBuf[0])); |
| |
| // For H band |
| if (aec->num_bands > 1) { |
| // H band gain |
| // average nlp over low band: average over second half of freq spectrum |
| // (4->8khz) |
| GetHighbandGain(hNl, &nlpGainHband); |
| |
| // Inverse comfort_noise |
| ScaledInverseFft(ooura_fft, comfortNoiseHband, fft, 2.0f, 0); |
| |
| // compute gain factor |
| for (j = 1; j < aec->num_bands; ++j) { |
| for (i = 0; i < PART_LEN; i++) { |
| output[j][i] = aec->previous_nearend_block[j][i] * nlpGainHband; |
| } |
| } |
| |
| // Add some comfort noise where Hband is attenuated. |
| for (i = 0; i < PART_LEN; i++) { |
| output[1][i] += cnScaleHband * fft[i]; |
| } |
| |
| // Saturate output to keep it in the allowed range. |
| for (j = 1; j < aec->num_bands; ++j) { |
| for (i = 0; i < PART_LEN; i++) { |
| output[j][i] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, output[j][i], |
| WEBRTC_SPL_WORD16_MIN); |
| } |
| } |
| } |
| |
| // Copy the current block to the old position. |
| memcpy(aec->eBuf, aec->eBuf + PART_LEN, sizeof(float) * PART_LEN); |
| |
| memmove(aec->xfwBuf + PART_LEN1, aec->xfwBuf, |
| sizeof(aec->xfwBuf) - sizeof(complex_t) * PART_LEN1); |
| } |
| |
| static void ProcessNearendBlock( |
| AecCore* aec, |
| float farend_extended_block_lowest_band[PART_LEN2], |
| float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN], |
| float output_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { |
| size_t i; |
| |
| float fft[PART_LEN2]; |
| float nearend_extended_block_lowest_band[PART_LEN2]; |
| float farend_fft[2][PART_LEN1]; |
| float nearend_fft[2][PART_LEN1]; |
| float far_spectrum = 0.0f; |
| float near_spectrum = 0.0f; |
| float abs_far_spectrum[PART_LEN1]; |
| float abs_near_spectrum[PART_LEN1]; |
| |
| const float gPow[2] = {0.9f, 0.1f}; |
| |
| // Noise estimate constants. |
| const int noiseInitBlocks = 500 * aec->mult; |
| const float step = 0.1f; |
| const float ramp = 1.0002f; |
| const float gInitNoise[2] = {0.999f, 0.001f}; |
| |
| float echo_subtractor_output[PART_LEN]; |
| |
| aec->data_dumper->DumpWav("aec_far", PART_LEN, |
| &farend_extended_block_lowest_band[PART_LEN], |
| std::min(aec->sampFreq, 16000), 1); |
| aec->data_dumper->DumpWav("aec_near", PART_LEN, &nearend_block[0][0], |
| std::min(aec->sampFreq, 16000), 1); |
| |
| if (aec->metricsMode == 1) { |
| // Update power levels |
| UpdateLevel( |
| &aec->farlevel, |
| CalculatePower(&farend_extended_block_lowest_band[PART_LEN], PART_LEN)); |
| UpdateLevel(&aec->nearlevel, |
| CalculatePower(&nearend_block[0][0], PART_LEN)); |
| } |
| |
| // Convert far-end signal to the frequency domain. |
| memcpy(fft, farend_extended_block_lowest_band, sizeof(float) * PART_LEN2); |
| Fft(aec->ooura_fft, fft, farend_fft); |
| |
| // Form extended nearend frame. |
| memcpy(&nearend_extended_block_lowest_band[0], |
| &aec->previous_nearend_block[0][0], sizeof(float) * PART_LEN); |
| memcpy(&nearend_extended_block_lowest_band[PART_LEN], &nearend_block[0][0], |
| sizeof(float) * PART_LEN); |
| |
| // Convert near-end signal to the frequency domain. |
| memcpy(fft, nearend_extended_block_lowest_band, sizeof(float) * PART_LEN2); |
| Fft(aec->ooura_fft, fft, nearend_fft); |
| |
| // Power smoothing. |
| if (aec->refined_adaptive_filter_enabled) { |
| for (i = 0; i < PART_LEN1; ++i) { |
| far_spectrum = farend_fft[0][i] * farend_fft[0][i] + |
| farend_fft[1][i] * farend_fft[1][i]; |
| // Calculate the magnitude spectrum. |
| abs_far_spectrum[i] = sqrtf(far_spectrum); |
| } |
| RegressorPower(aec->num_partitions, aec->xfBufBlockPos, aec->xfBuf, |
| aec->xPow); |
| } else { |
| for (i = 0; i < PART_LEN1; ++i) { |
| far_spectrum = farend_fft[0][i] * farend_fft[0][i] + |
| farend_fft[1][i] * farend_fft[1][i]; |
| aec->xPow[i] = |
| gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum; |
| // Calculate the magnitude spectrum. |
| abs_far_spectrum[i] = sqrtf(far_spectrum); |
| } |
| } |
| |
| for (i = 0; i < PART_LEN1; ++i) { |
| near_spectrum = nearend_fft[0][i] * nearend_fft[0][i] + |
| nearend_fft[1][i] * nearend_fft[1][i]; |
| aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum; |
| // Calculate the magnitude spectrum. |
| abs_near_spectrum[i] = sqrtf(near_spectrum); |
| } |
| |
| // Estimate noise power. Wait until dPow is more stable. |
| if (aec->noiseEstCtr > 50) { |
| for (i = 0; i < PART_LEN1; i++) { |
| if (aec->dPow[i] < aec->dMinPow[i]) { |
| aec->dMinPow[i] = |
| (aec->dPow[i] + step * (aec->dMinPow[i] - aec->dPow[i])) * ramp; |
| } else { |
| aec->dMinPow[i] *= ramp; |
| } |
| } |
| } |
| |
| // Smooth increasing noise power from zero at the start, |
| // to avoid a sudden burst of comfort noise. |
| if (aec->noiseEstCtr < noiseInitBlocks) { |
| aec->noiseEstCtr++; |
| for (i = 0; i < PART_LEN1; i++) { |
| if (aec->dMinPow[i] > aec->dInitMinPow[i]) { |
| aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] + |
| gInitNoise[1] * aec->dMinPow[i]; |
| } else { |
| aec->dInitMinPow[i] = aec->dMinPow[i]; |
| } |
| } |
| aec->noisePow = aec->dInitMinPow; |
| } else { |
| aec->noisePow = aec->dMinPow; |
| } |
| |
| // Block wise delay estimation used for logging |
| if (aec->delay_logging_enabled) { |
| if (WebRtc_AddFarSpectrumFloat(aec->delay_estimator_farend, |
| abs_far_spectrum, PART_LEN1) == 0) { |
| int delay_estimate = WebRtc_DelayEstimatorProcessFloat( |
| aec->delay_estimator, abs_near_spectrum, PART_LEN1); |
| if (delay_estimate >= 0) { |
| // Update delay estimate buffer. |
| aec->delay_histogram[delay_estimate]++; |
| aec->num_delay_values++; |
| } |
| if (aec->delay_metrics_delivered == 1 && |
| aec->num_delay_values >= kDelayMetricsAggregationWindow) { |
| UpdateDelayMetrics(aec); |
| } |
| } |
| } |
| |
| // Perform echo subtraction. |
| EchoSubtraction( |
| aec->ooura_fft, aec->num_partitions, aec->extended_filter_enabled, |
| &aec->extreme_filter_divergence, aec->filter_step_size, |
| aec->error_threshold, &farend_fft[0][0], &aec->xfBufBlockPos, aec->xfBuf, |
| &nearend_block[0][0], aec->xPow, aec->wfBuf, echo_subtractor_output); |
| aec->data_dumper->DumpRaw("aec_h_fft", PART_LEN1 * aec->num_partitions, |
| &aec->wfBuf[0][0]); |
| aec->data_dumper->DumpRaw("aec_h_fft", PART_LEN1 * aec->num_partitions, |
| &aec->wfBuf[1][0]); |
| |
| aec->data_dumper->DumpWav("aec_out_linear", PART_LEN, echo_subtractor_output, |
| std::min(aec->sampFreq, 16000), 1); |
| |
| if (aec->metricsMode == 1) { |
| UpdateLevel(&aec->linoutlevel, |
| CalculatePower(echo_subtractor_output, PART_LEN)); |
| } |
| |
| // Perform echo suppression. |
| EchoSuppression(aec->ooura_fft, aec, nearend_extended_block_lowest_band, |
| farend_extended_block_lowest_band, echo_subtractor_output, |
| output_block); |
| |
| if (aec->metricsMode == 1) { |
| UpdateLevel(&aec->nlpoutlevel, |
| CalculatePower(&output_block[0][0], PART_LEN)); |
| UpdateMetrics(aec); |
| } |
| |
| // Store the nearend signal until the next frame. |
| for (i = 0; i < aec->num_bands; ++i) { |
| memcpy(&aec->previous_nearend_block[i][0], &nearend_block[i][0], |
| sizeof(float) * PART_LEN); |
| } |
| |
| aec->data_dumper->DumpWav("aec_out", PART_LEN, &output_block[0][0], |
| std::min(aec->sampFreq, 16000), 1); |
| } |
| |
| AecCore* WebRtcAec_CreateAec(int instance_count) { |
| AecCore* aec = new AecCore(instance_count); |
| |
| if (!aec) { |
| return NULL; |
| } |
| aec->nearend_buffer_size = 0; |
| memset(&aec->nearend_buffer[0], 0, sizeof(aec->nearend_buffer)); |
| // Start the output buffer with zeros to be able to produce |
| // a full output frame in the first frame. |
| aec->output_buffer_size = PART_LEN - (FRAME_LEN - PART_LEN); |
| memset(&aec->output_buffer[0], 0, sizeof(aec->output_buffer)); |
| |
| aec->delay_estimator_farend = |
| WebRtc_CreateDelayEstimatorFarend(PART_LEN1, kHistorySizeBlocks); |
| if (aec->delay_estimator_farend == NULL) { |
| WebRtcAec_FreeAec(aec); |
| return NULL; |
| } |
| // We create the delay_estimator with the same amount of maximum lookahead as |
| // the delay history size (kHistorySizeBlocks) for symmetry reasons. |
| aec->delay_estimator = WebRtc_CreateDelayEstimator( |
| aec->delay_estimator_farend, kHistorySizeBlocks); |
| if (aec->delay_estimator == NULL) { |
| WebRtcAec_FreeAec(aec); |
| return NULL; |
| } |
| #ifdef WEBRTC_ANDROID |
| aec->delay_agnostic_enabled = 1; // DA-AEC enabled by default. |
| // DA-AEC assumes the system is causal from the beginning and will self adjust |
| // the lookahead when shifting is required. |
| WebRtc_set_lookahead(aec->delay_estimator, 0); |
| #else |
| aec->delay_agnostic_enabled = 0; |
| WebRtc_set_lookahead(aec->delay_estimator, kLookaheadBlocks); |
| #endif |
| aec->extended_filter_enabled = 0; |
| aec->refined_adaptive_filter_enabled = false; |
| |
| // Assembly optimization |
| WebRtcAec_FilterFar = FilterFar; |
| WebRtcAec_ScaleErrorSignal = ScaleErrorSignal; |
| WebRtcAec_FilterAdaptation = FilterAdaptation; |
| WebRtcAec_Overdrive = Overdrive; |
| WebRtcAec_Suppress = Suppress; |
| WebRtcAec_ComputeCoherence = ComputeCoherence; |
| WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectra; |
| WebRtcAec_StoreAsComplex = StoreAsComplex; |
| WebRtcAec_PartitionDelay = PartitionDelay; |
| WebRtcAec_WindowData = WindowData; |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| if (WebRtc_GetCPUInfo(kSSE2)) { |
| WebRtcAec_InitAec_SSE2(); |
| } |
| #endif |
| |
| #if defined(MIPS_FPU_LE) |
| WebRtcAec_InitAec_mips(); |
| #endif |
| |
| #if defined(WEBRTC_HAS_NEON) |
| WebRtcAec_InitAec_neon(); |
| #endif |
| |
| return aec; |
| } |
| |
| void WebRtcAec_FreeAec(AecCore* aec) { |
| if (aec == NULL) { |
| return; |
| } |
| |
| WebRtc_FreeDelayEstimator(aec->delay_estimator); |
| WebRtc_FreeDelayEstimatorFarend(aec->delay_estimator_farend); |
| |
| delete aec; |
| } |
| |
| static void SetAdaptiveFilterStepSize(AecCore* aec) { |
| // Extended filter adaptation parameter. |
| // TODO(ajm): No narrowband tuning yet. |
| const float kExtendedMu = 0.4f; |
| |
| if (aec->refined_adaptive_filter_enabled) { |
| aec->filter_step_size = 0.05f; |
| } else { |
| if (aec->extended_filter_enabled) { |
| aec->filter_step_size = kExtendedMu; |
| } else { |
| if (aec->sampFreq == 8000) { |
| aec->filter_step_size = 0.6f; |
| } else { |
| aec->filter_step_size = 0.5f; |
| } |
| } |
| } |
| } |
| |
| static void SetErrorThreshold(AecCore* aec) { |
| // Extended filter adaptation parameter. |
| // TODO(ajm): No narrowband tuning yet. |
| static const float kExtendedErrorThreshold = 1.0e-6f; |
| |
| if (aec->extended_filter_enabled) { |
| aec->error_threshold = kExtendedErrorThreshold; |
| } else { |
| if (aec->sampFreq == 8000) { |
| aec->error_threshold = 2e-6f; |
| } else { |
| aec->error_threshold = 1.5e-6f; |
| } |
| } |
| } |
| |
| int WebRtcAec_InitAec(AecCore* aec, int sampFreq) { |
| int i; |
| aec->data_dumper->InitiateNewSetOfRecordings(); |
| |
| aec->sampFreq = sampFreq; |
| |
| SetAdaptiveFilterStepSize(aec); |
| SetErrorThreshold(aec); |
| |
| if (sampFreq == 8000) { |
| aec->num_bands = 1; |
| } else { |
| aec->num_bands = (size_t)(sampFreq / 16000); |
| } |
| |
| // Start the output buffer with zeros to be able to produce |
| // a full output frame in the first frame. |
| aec->output_buffer_size = PART_LEN - (FRAME_LEN - PART_LEN); |
| memset(&aec->output_buffer[0], 0, sizeof(aec->output_buffer)); |
| aec->nearend_buffer_size = 0; |
| memset(&aec->nearend_buffer[0], 0, sizeof(aec->nearend_buffer)); |
| |
| // Initialize far-end buffer. |
| aec->farend_block_buffer_.ReInit(); |
| |
| aec->system_delay = 0; |
| |
| if (WebRtc_InitDelayEstimatorFarend(aec->delay_estimator_farend) != 0) { |
| return -1; |
| } |
| if (WebRtc_InitDelayEstimator(aec->delay_estimator) != 0) { |
| return -1; |
| } |
| aec->delay_logging_enabled = 0; |
| aec->delay_metrics_delivered = 0; |
| memset(aec->delay_histogram, 0, sizeof(aec->delay_histogram)); |
| aec->num_delay_values = 0; |
| aec->delay_median = -1; |
| aec->delay_std = -1; |
| aec->fraction_poor_delays = -1.0f; |
| |
| aec->previous_delay = -2; // (-2): Uninitialized. |
| aec->delay_correction_count = 0; |
| aec->shift_offset = kInitialShiftOffset; |
| aec->delay_quality_threshold = kDelayQualityThresholdMin; |
| |
| aec->num_partitions = kNormalNumPartitions; |
| |
| // Update the delay estimator with filter length. We use half the |
| // |num_partitions| to take the echo path into account. In practice we say |
| // that the echo has a duration of maximum half |num_partitions|, which is not |
| // true, but serves as a crude measure. |
| WebRtc_set_allowed_offset(aec->delay_estimator, aec->num_partitions / 2); |
| // TODO(bjornv): I currently hard coded the enable. Once we've established |
| // that AECM has no performance regression, robust_validation will be enabled |
| // all the time and the APIs to turn it on/off will be removed. Hence, remove |
| // this line then. |
| WebRtc_enable_robust_validation(aec->delay_estimator, 1); |
| aec->frame_count = 0; |
| |
| // Default target suppression mode. |
| aec->nlp_mode = 1; |
| |
| // Sampling frequency multiplier w.r.t. 8 kHz. |
| // In case of multiple bands we process the lower band in 16 kHz, hence the |
| // multiplier is always 2. |
| if (aec->num_bands > 1) { |
| aec->mult = 2; |
| } else { |
| aec->mult = static_cast<int16_t>(aec->sampFreq) / 8000; |
| } |
| |
| aec->farBufWritePos = 0; |
| aec->farBufReadPos = 0; |
| |
| aec->inSamples = 0; |
| aec->outSamples = 0; |
| aec->knownDelay = 0; |
| |
| // Initialize buffers |
| memset(aec->previous_nearend_block, 0, sizeof(aec->previous_nearend_block)); |
| memset(aec->eBuf, 0, sizeof(aec->eBuf)); |
| |
| memset(aec->xPow, 0, sizeof(aec->xPow)); |
| memset(aec->dPow, 0, sizeof(aec->dPow)); |
| memset(aec->dInitMinPow, 0, sizeof(aec->dInitMinPow)); |
| aec->noisePow = aec->dInitMinPow; |
| aec->noiseEstCtr = 0; |
| |
| // Initial comfort noise power |
| for (i = 0; i < PART_LEN1; i++) { |
| aec->dMinPow[i] = 1.0e6f; |
| } |
| |
| // Holds the last block written to |
| aec->xfBufBlockPos = 0; |
| // TODO(peah): Investigate need for these initializations. Deleting them |
| // doesn't change the output at all and yields 0.4% overall speedup. |
| memset(aec->xfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); |
| memset(aec->wfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); |
| memset(aec->coherence_state.sde, 0, sizeof(complex_t) * PART_LEN1); |
| memset(aec->coherence_state.sxd, 0, sizeof(complex_t) * PART_LEN1); |
| memset(aec->xfwBuf, 0, |
| sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); |
| memset(aec->coherence_state.se, 0, sizeof(float) * PART_LEN1); |
| |
| // To prevent numerical instability in the first block. |
| for (i = 0; i < PART_LEN1; i++) { |
| aec->coherence_state.sd[i] = 1; |
| } |
| for (i = 0; i < PART_LEN1; i++) { |
| aec->coherence_state.sx[i] = 1; |
| } |
| |
| memset(aec->hNs, 0, sizeof(aec->hNs)); |
| memset(aec->outBuf, 0, sizeof(float) * PART_LEN); |
| |
| aec->hNlFbMin = 1; |
| aec->hNlFbLocalMin = 1; |
| aec->hNlXdAvgMin = 1; |
| aec->hNlNewMin = 0; |
| aec->hNlMinCtr = 0; |
| aec->overDrive = 2; |
| aec->overdrive_scaling = 2; |
| aec->delayIdx = 0; |
| aec->stNearState = 0; |
| aec->echoState = 0; |
| aec->divergeState = 0; |
| |
| aec->seed = 777; |
| aec->delayEstCtr = 0; |
| |
| aec->extreme_filter_divergence = 0; |
| |
| // Metrics disabled by default |
| aec->metricsMode = 0; |
| InitMetrics(aec); |
| |
| return 0; |
| } |
| |
| void WebRtcAec_BufferFarendBlock(AecCore* aec, const float* farend) { |
| // Check if the buffer is full, and in that case flush the oldest data. |
| if (aec->farend_block_buffer_.AvaliableSpace() < 1) { |
| aec->farend_block_buffer_.AdjustSize(1); |
| } |
| aec->farend_block_buffer_.Insert(farend); |
| } |
| |
| int WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(AecCore* aec, |
| int buffer_size_decrease) { |
| int achieved_buffer_size_decrease = |
| aec->farend_block_buffer_.AdjustSize(buffer_size_decrease); |
| aec->system_delay -= achieved_buffer_size_decrease * PART_LEN; |
| return achieved_buffer_size_decrease; |
| } |
| |
| void FormNearendBlock( |
| size_t nearend_start_index, |
| size_t num_bands, |
| const float* const* nearend_frame, |
| size_t num_samples_from_nearend_frame, |
| const float nearend_buffer[NUM_HIGH_BANDS_MAX + 1] |
| [PART_LEN - (FRAME_LEN - PART_LEN)], |
| float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]) { |
| RTC_DCHECK_LE(num_samples_from_nearend_frame, PART_LEN); |
| const int num_samples_from_buffer = PART_LEN - num_samples_from_nearend_frame; |
| |
| if (num_samples_from_buffer > 0) { |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy(&nearend_block[i][0], &nearend_buffer[i][0], |
| num_samples_from_buffer * sizeof(float)); |
| } |
| } |
| |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy(&nearend_block[i][num_samples_from_buffer], |
| &nearend_frame[i][nearend_start_index], |
| num_samples_from_nearend_frame * sizeof(float)); |
| } |
| } |
| |
| void BufferNearendFrame( |
| size_t nearend_start_index, |
| size_t num_bands, |
| const float* const* nearend_frame, |
| size_t num_samples_to_buffer, |
| float nearend_buffer[NUM_HIGH_BANDS_MAX + 1] |
| [PART_LEN - (FRAME_LEN - PART_LEN)]) { |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy( |
| &nearend_buffer[i][0], |
| &nearend_frame[i] |
| [nearend_start_index + FRAME_LEN - num_samples_to_buffer], |
| num_samples_to_buffer * sizeof(float)); |
| } |
| } |
| |
| void BufferOutputBlock(size_t num_bands, |
| const float output_block[NUM_HIGH_BANDS_MAX + 1] |
| [PART_LEN], |
| size_t* output_buffer_size, |
| float output_buffer[NUM_HIGH_BANDS_MAX + 1] |
| [2 * PART_LEN]) { |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy(&output_buffer[i][*output_buffer_size], &output_block[i][0], |
| PART_LEN * sizeof(float)); |
| } |
| (*output_buffer_size) += PART_LEN; |
| } |
| |
| void FormOutputFrame(size_t output_start_index, |
| size_t num_bands, |
| size_t* output_buffer_size, |
| float output_buffer[NUM_HIGH_BANDS_MAX + 1][2 * PART_LEN], |
| float* const* output_frame) { |
| RTC_DCHECK_LE(FRAME_LEN, *output_buffer_size); |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy(&output_frame[i][output_start_index], &output_buffer[i][0], |
| FRAME_LEN * sizeof(float)); |
| } |
| (*output_buffer_size) -= FRAME_LEN; |
| if (*output_buffer_size > 0) { |
| RTC_DCHECK_GE(2 * PART_LEN - FRAME_LEN, (*output_buffer_size)); |
| for (size_t i = 0; i < num_bands; ++i) { |
| memcpy(&output_buffer[i][0], &output_buffer[i][FRAME_LEN], |
| (*output_buffer_size) * sizeof(float)); |
| } |
| } |
| } |
| |
| void WebRtcAec_ProcessFrames(AecCore* aec, |
| const float* const* nearend, |
| size_t num_bands, |
| size_t num_samples, |
| int knownDelay, |
| float* const* out) { |
| RTC_DCHECK(num_samples == 80 || num_samples == 160); |
| |
| aec->frame_count++; |
| // For each frame the process is as follows: |
| // 1) If the system_delay indicates on being too small for processing a |
| // frame we stuff the buffer with enough data for 10 ms. |
| // 2 a) Adjust the buffer to the system delay, by moving the read pointer. |
| // b) Apply signal based delay correction, if we have detected poor AEC |
| // performance. |
| // 3) TODO(bjornv): Investigate if we need to add this: |
| // If we can't move read pointer due to buffer size limitations we |
| // flush/stuff the buffer. |
| // 4) Process as many partitions as possible. |
| // 5) Update the |system_delay| with respect to a full frame of FRAME_LEN |
| // samples. Even though we will have data left to process (we work with |
| // partitions) we consider updating a whole frame, since that's the |
| // amount of data we input and output in audio_processing. |
| // 6) Update the outputs. |
| |
| // The AEC has two different delay estimation algorithms built in. The |
| // first relies on delay input values from the user and the amount of |
| // shifted buffer elements is controlled by |knownDelay|. This delay will |
| // give a guess on how much we need to shift far-end buffers to align with |
| // the near-end signal. The other delay estimation algorithm uses the |
| // far- and near-end signals to find the offset between them. This one |
| // (called "signal delay") is then used to fine tune the alignment, or |
| // simply compensate for errors in the system based one. |
| // Note that the two algorithms operate independently. Currently, we only |
| // allow one algorithm to be turned on. |
| |
| RTC_DCHECK_EQ(aec->num_bands, num_bands); |
| |
| for (size_t j = 0; j < num_samples; j += FRAME_LEN) { |
| // 1) At most we process |aec->mult|+1 partitions in 10 ms. Make sure we |
| // have enough far-end data for that by stuffing the buffer if the |
| // |system_delay| indicates others. |
| if (aec->system_delay < FRAME_LEN) { |
| // We don't have enough data so we rewind 10 ms. |
| WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aec, -(aec->mult + 1)); |
| } |
| |
| if (!aec->delay_agnostic_enabled) { |
| // 2 a) Compensate for a possible change in the system delay. |
| |
| // TODO(bjornv): Investigate how we should round the delay difference; |
| // right now we know that incoming |knownDelay| is underestimated when |
| // it's less than |aec->knownDelay|. We therefore, round (-32) in that |
| // direction. In the other direction, we don't have this situation, but |
| // might flush one partition too little. This can cause non-causality, |
| // which should be investigated. Maybe, allow for a non-symmetric |
| // rounding, like -16. |
| int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN; |
| int moved_elements = aec->farend_block_buffer_.AdjustSize(move_elements); |
| MaybeLogDelayAdjustment(moved_elements * (aec->sampFreq == 8000 ? 8 : 4), |
| DelaySource::kSystemDelay); |
| aec->knownDelay -= moved_elements * PART_LEN; |
| } else { |
| // 2 b) Apply signal based delay correction. |
| int move_elements = SignalBasedDelayCorrection(aec); |
| int moved_elements = aec->farend_block_buffer_.AdjustSize(move_elements); |
| MaybeLogDelayAdjustment(moved_elements * (aec->sampFreq == 8000 ? 8 : 4), |
| DelaySource::kDelayAgnostic); |
| int far_near_buffer_diff = |
| aec->farend_block_buffer_.Size() - |
| (aec->nearend_buffer_size + FRAME_LEN) / PART_LEN; |
| WebRtc_SoftResetDelayEstimator(aec->delay_estimator, moved_elements); |
| WebRtc_SoftResetDelayEstimatorFarend(aec->delay_estimator_farend, |
| moved_elements); |
| // If we rely on reported system delay values only, a buffer underrun here |
| // can never occur since we've taken care of that in 1) above. Here, we |
| // apply signal based delay correction and can therefore end up with |
| // buffer underruns since the delay estimation can be wrong. We therefore |
| // stuff the buffer with enough elements if needed. |
| if (far_near_buffer_diff < 0) { |
| WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aec, |
| far_near_buffer_diff); |
| } |
| } |
| |
| static_assert( |
| 16 == (FRAME_LEN - PART_LEN), |
| "These constants need to be properly related for this code to work"); |
| float output_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]; |
| float nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN]; |
| float farend_extended_block_lowest_band[PART_LEN2]; |
| |
| // Form and process a block of nearend samples, buffer the output block of |
| // samples. |
| aec->farend_block_buffer_.ExtractExtendedBlock( |
| farend_extended_block_lowest_band); |
| FormNearendBlock(j, num_bands, nearend, PART_LEN - aec->nearend_buffer_size, |
| aec->nearend_buffer, nearend_block); |
| ProcessNearendBlock(aec, farend_extended_block_lowest_band, nearend_block, |
| output_block); |
| BufferOutputBlock(num_bands, output_block, &aec->output_buffer_size, |
| aec->output_buffer); |
| |
| if ((FRAME_LEN - PART_LEN + aec->nearend_buffer_size) == PART_LEN) { |
| // When possible (every fourth frame) form and process a second block of |
| // nearend samples, buffer the output block of samples. |
| aec->farend_block_buffer_.ExtractExtendedBlock( |
| farend_extended_block_lowest_band); |
| FormNearendBlock(j + FRAME_LEN - PART_LEN, num_bands, nearend, PART_LEN, |
| aec->nearend_buffer, nearend_block); |
| ProcessNearendBlock(aec, farend_extended_block_lowest_band, nearend_block, |
| output_block); |
| BufferOutputBlock(num_bands, output_block, &aec->output_buffer_size, |
| aec->output_buffer); |
| |
| // Reset the buffer size as there are no samples left in the nearend input |
| // to buffer. |
| aec->nearend_buffer_size = 0; |
| } else { |
| // Buffer the remaining samples in the nearend input. |
| aec->nearend_buffer_size += FRAME_LEN - PART_LEN; |
| BufferNearendFrame(j, num_bands, nearend, aec->nearend_buffer_size, |
| aec->nearend_buffer); |
| } |
| |
| // 5) Update system delay with respect to the entire frame. |
| aec->system_delay -= FRAME_LEN; |
| |
| // 6) Form the output frame. |
| FormOutputFrame(j, num_bands, &aec->output_buffer_size, aec->output_buffer, |
| out); |
| } |
| } |
| |
| int WebRtcAec_GetDelayMetricsCore(AecCore* self, |
| int* median, |
| int* std, |
| float* fraction_poor_delays) { |
| RTC_DCHECK(self); |
| RTC_DCHECK(median); |
| RTC_DCHECK(std); |
| |
| if (self->delay_logging_enabled == 0) { |
| // Logging disabled. |
| return -1; |
| } |
| |
| if (self->delay_metrics_delivered == 0) { |
| UpdateDelayMetrics(self); |
| self->delay_metrics_delivered = 1; |
| } |
| *median = self->delay_median; |
| *std = self->delay_std; |
| *fraction_poor_delays = self->fraction_poor_delays; |
| |
| return 0; |
| } |
| |
| int WebRtcAec_echo_state(AecCore* self) { |
| return self->echoState; |
| } |
| |
| void WebRtcAec_GetEchoStats(AecCore* self, |
| Stats* erl, |
| Stats* erle, |
| Stats* a_nlp, |
| float* divergent_filter_fraction) { |
| RTC_DCHECK(erl); |
| RTC_DCHECK(erle); |
| RTC_DCHECK(a_nlp); |
| *erl = self->erl; |
| *erle = self->erle; |
| *a_nlp = self->aNlp; |
| *divergent_filter_fraction = |
| self->divergent_filter_fraction.GetLatestFraction(); |
| } |
| |
| void WebRtcAec_SetConfigCore(AecCore* self, |
| int nlp_mode, |
| int metrics_mode, |
| int delay_logging) { |
| RTC_DCHECK_GE(nlp_mode, 0); |
| RTC_DCHECK_LT(nlp_mode, 3); |
| self->nlp_mode = nlp_mode; |
| self->metricsMode = metrics_mode; |
| if (self->metricsMode) { |
| InitMetrics(self); |
| } |
| // Turn on delay logging if it is either set explicitly or if delay agnostic |
| // AEC is enabled (which requires delay estimates). |
| self->delay_logging_enabled = delay_logging || self->delay_agnostic_enabled; |
| if (self->delay_logging_enabled) { |
| memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); |
| } |
| } |
| |
| void WebRtcAec_enable_delay_agnostic(AecCore* self, int enable) { |
| self->delay_agnostic_enabled = enable; |
| } |
| |
| int WebRtcAec_delay_agnostic_enabled(AecCore* self) { |
| return self->delay_agnostic_enabled; |
| } |
| |
| void WebRtcAec_enable_refined_adaptive_filter(AecCore* self, bool enable) { |
| self->refined_adaptive_filter_enabled = enable; |
| SetAdaptiveFilterStepSize(self); |
| SetErrorThreshold(self); |
| } |
| |
| bool WebRtcAec_refined_adaptive_filter_enabled(const AecCore* self) { |
| return self->refined_adaptive_filter_enabled; |
| } |
| |
| void WebRtcAec_enable_extended_filter(AecCore* self, int enable) { |
| self->extended_filter_enabled = enable; |
| SetAdaptiveFilterStepSize(self); |
| SetErrorThreshold(self); |
| self->num_partitions = enable ? kExtendedNumPartitions : kNormalNumPartitions; |
| // Update the delay estimator with filter length. See InitAEC() for details. |
| WebRtc_set_allowed_offset(self->delay_estimator, self->num_partitions / 2); |
| } |
| |
| int WebRtcAec_extended_filter_enabled(AecCore* self) { |
| return self->extended_filter_enabled; |
| } |
| |
| int WebRtcAec_system_delay(AecCore* self) { |
| return self->system_delay; |
| } |
| |
| void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { |
| RTC_DCHECK_GE(delay, 0); |
| self->system_delay = delay; |
| } |
| } // namespace webrtc |