| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/strings/string_view.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <map> |
| #include <random> |
| #include <string> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "benchmark/benchmark.h" |
| #include "absl/base/attributes.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/macros.h" |
| #include "absl/strings/str_cat.h" |
| |
| namespace { |
| |
| // Provide a forcibly out-of-line wrapper for operator== that can be used in |
| // benchmarks to measure the impact of inlining. |
| ABSL_ATTRIBUTE_NOINLINE |
| bool NonInlinedEq(absl::string_view a, absl::string_view b) { return a == b; } |
| |
| // We use functions that cannot be inlined to perform the comparison loops so |
| // that inlining of the operator== can't optimize away *everything*. |
| ABSL_ATTRIBUTE_NOINLINE |
| void DoEqualityComparisons(benchmark::State& state, absl::string_view a, |
| absl::string_view b) { |
| for (auto _ : state) { |
| benchmark::DoNotOptimize(a == b); |
| } |
| } |
| |
| void BM_EqualIdentical(benchmark::State& state) { |
| std::string x(state.range(0), 'a'); |
| DoEqualityComparisons(state, x, x); |
| } |
| BENCHMARK(BM_EqualIdentical)->DenseRange(0, 3)->Range(4, 1 << 10); |
| |
| void BM_EqualSame(benchmark::State& state) { |
| std::string x(state.range(0), 'a'); |
| std::string y = x; |
| DoEqualityComparisons(state, x, y); |
| } |
| BENCHMARK(BM_EqualSame) |
| ->DenseRange(0, 10) |
| ->Arg(20) |
| ->Arg(40) |
| ->Arg(70) |
| ->Arg(110) |
| ->Range(160, 4096); |
| |
| void BM_EqualDifferent(benchmark::State& state) { |
| const int len = state.range(0); |
| std::string x(len, 'a'); |
| std::string y = x; |
| if (len > 0) { |
| y[len - 1] = 'b'; |
| } |
| DoEqualityComparisons(state, x, y); |
| } |
| BENCHMARK(BM_EqualDifferent)->DenseRange(0, 3)->Range(4, 1 << 10); |
| |
| // This benchmark is intended to check that important simplifications can be |
| // made with absl::string_view comparisons against constant strings. The idea is |
| // that if constant strings cause redundant components of the comparison, the |
| // compiler should detect and eliminate them. Here we use 8 different strings, |
| // each with the same size. Provided our comparison makes the implementation |
| // inline-able by the compiler, it should fold all of these away into a single |
| // size check once per loop iteration. |
| ABSL_ATTRIBUTE_NOINLINE |
| void DoConstantSizeInlinedEqualityComparisons(benchmark::State& state, |
| absl::string_view a) { |
| for (auto _ : state) { |
| benchmark::DoNotOptimize(a == "aaa"); |
| benchmark::DoNotOptimize(a == "bbb"); |
| benchmark::DoNotOptimize(a == "ccc"); |
| benchmark::DoNotOptimize(a == "ddd"); |
| benchmark::DoNotOptimize(a == "eee"); |
| benchmark::DoNotOptimize(a == "fff"); |
| benchmark::DoNotOptimize(a == "ggg"); |
| benchmark::DoNotOptimize(a == "hhh"); |
| } |
| } |
| void BM_EqualConstantSizeInlined(benchmark::State& state) { |
| std::string x(state.range(0), 'a'); |
| DoConstantSizeInlinedEqualityComparisons(state, x); |
| } |
| // We only need to check for size of 3, and <> 3 as this benchmark only has to |
| // do with size differences. |
| BENCHMARK(BM_EqualConstantSizeInlined)->DenseRange(2, 4); |
| |
| // This benchmark exists purely to give context to the above timings: this is |
| // what they would look like if the compiler is completely unable to simplify |
| // between two comparisons when they are comparing against constant strings. |
| ABSL_ATTRIBUTE_NOINLINE |
| void DoConstantSizeNonInlinedEqualityComparisons(benchmark::State& state, |
| absl::string_view a) { |
| for (auto _ : state) { |
| // Force these out-of-line to compare with the above function. |
| benchmark::DoNotOptimize(NonInlinedEq(a, "aaa")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "bbb")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "ccc")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "ddd")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "eee")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "fff")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "ggg")); |
| benchmark::DoNotOptimize(NonInlinedEq(a, "hhh")); |
| } |
| } |
| |
| void BM_EqualConstantSizeNonInlined(benchmark::State& state) { |
| std::string x(state.range(0), 'a'); |
| DoConstantSizeNonInlinedEqualityComparisons(state, x); |
| } |
| // We only need to check for size of 3, and <> 3 as this benchmark only has to |
| // do with size differences. |
| BENCHMARK(BM_EqualConstantSizeNonInlined)->DenseRange(2, 4); |
| |
| void BM_CompareSame(benchmark::State& state) { |
| const int len = state.range(0); |
| std::string x; |
| for (int i = 0; i < len; i++) { |
| x += 'a'; |
| } |
| std::string y = x; |
| absl::string_view a = x; |
| absl::string_view b = y; |
| |
| for (auto _ : state) { |
| benchmark::DoNotOptimize(a.compare(b)); |
| } |
| } |
| BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10); |
| |
| void BM_find_string_view_len_one(benchmark::State& state) { |
| std::string haystack(state.range(0), '0'); |
| absl::string_view s(haystack); |
| for (auto _ : state) { |
| s.find("x"); // not present; length 1 |
| } |
| } |
| BENCHMARK(BM_find_string_view_len_one)->Range(1, 1 << 20); |
| |
| void BM_find_string_view_len_two(benchmark::State& state) { |
| std::string haystack(state.range(0), '0'); |
| absl::string_view s(haystack); |
| for (auto _ : state) { |
| s.find("xx"); // not present; length 2 |
| } |
| } |
| BENCHMARK(BM_find_string_view_len_two)->Range(1, 1 << 20); |
| |
| void BM_find_one_char(benchmark::State& state) { |
| std::string haystack(state.range(0), '0'); |
| absl::string_view s(haystack); |
| for (auto _ : state) { |
| s.find('x'); // not present |
| } |
| } |
| BENCHMARK(BM_find_one_char)->Range(1, 1 << 20); |
| |
| void BM_rfind_one_char(benchmark::State& state) { |
| std::string haystack(state.range(0), '0'); |
| absl::string_view s(haystack); |
| for (auto _ : state) { |
| s.rfind('x'); // not present |
| } |
| } |
| BENCHMARK(BM_rfind_one_char)->Range(1, 1 << 20); |
| |
| void BM_worst_case_find_first_of(benchmark::State& state, int haystack_len) { |
| const int needle_len = state.range(0); |
| std::string needle; |
| for (int i = 0; i < needle_len; ++i) { |
| needle += 'a' + i; |
| } |
| std::string haystack(haystack_len, '0'); // 1000 zeros. |
| |
| absl::string_view s(haystack); |
| for (auto _ : state) { |
| s.find_first_of(needle); |
| } |
| } |
| |
| void BM_find_first_of_short(benchmark::State& state) { |
| BM_worst_case_find_first_of(state, 10); |
| } |
| |
| void BM_find_first_of_medium(benchmark::State& state) { |
| BM_worst_case_find_first_of(state, 100); |
| } |
| |
| void BM_find_first_of_long(benchmark::State& state) { |
| BM_worst_case_find_first_of(state, 1000); |
| } |
| |
| BENCHMARK(BM_find_first_of_short)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); |
| BENCHMARK(BM_find_first_of_medium)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); |
| BENCHMARK(BM_find_first_of_long)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); |
| |
| struct EasyMap : public std::map<absl::string_view, uint64_t> { |
| explicit EasyMap(size_t) {} |
| }; |
| |
| // This templated benchmark helper function is intended to stress operator== or |
| // operator< in a realistic test. It surely isn't entirely realistic, but it's |
| // a start. The test creates a map of type Map, a template arg, and populates |
| // it with table_size key/value pairs. Each key has WordsPerKey words. After |
| // creating the map, a number of lookups are done in random order. Some keys |
| // are used much more frequently than others in this phase of the test. |
| template <typename Map, int WordsPerKey> |
| void StringViewMapBenchmark(benchmark::State& state) { |
| const int table_size = state.range(0); |
| const double kFractionOfKeysThatAreHot = 0.2; |
| const int kNumLookupsOfHotKeys = 20; |
| const int kNumLookupsOfColdKeys = 1; |
| const char* words[] = {"the", "quick", "brown", "fox", "jumped", |
| "over", "the", "lazy", "dog", "and", |
| "found", "a", "large", "mushroom", "and", |
| "a", "couple", "crickets", "eating", "pie"}; |
| // Create some keys that consist of words in random order. |
| std::random_device r; |
| std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()}); |
| std::mt19937 rng(seed); |
| std::vector<std::string> keys(table_size); |
| std::vector<int> all_indices; |
| const int kBlockSize = 1 << 12; |
| std::unordered_set<std::string> t(kBlockSize); |
| std::uniform_int_distribution<int> uniform(0, ABSL_ARRAYSIZE(words) - 1); |
| for (int i = 0; i < table_size; i++) { |
| all_indices.push_back(i); |
| do { |
| keys[i].clear(); |
| for (int j = 0; j < WordsPerKey; j++) { |
| absl::StrAppend(&keys[i], j > 0 ? " " : "", words[uniform(rng)]); |
| } |
| } while (!t.insert(keys[i]).second); |
| } |
| |
| // Create a list of strings to lookup: a permutation of the array of |
| // keys we just created, with repeats. "Hot" keys get repeated more. |
| std::shuffle(all_indices.begin(), all_indices.end(), rng); |
| const int num_hot = table_size * kFractionOfKeysThatAreHot; |
| const int num_cold = table_size - num_hot; |
| std::vector<int> hot_indices(all_indices.begin(), |
| all_indices.begin() + num_hot); |
| std::vector<int> indices; |
| for (int i = 0; i < kNumLookupsOfColdKeys; i++) { |
| indices.insert(indices.end(), all_indices.begin(), all_indices.end()); |
| } |
| for (int i = 0; i < kNumLookupsOfHotKeys - kNumLookupsOfColdKeys; i++) { |
| indices.insert(indices.end(), hot_indices.begin(), hot_indices.end()); |
| } |
| std::shuffle(indices.begin(), indices.end(), rng); |
| ABSL_RAW_CHECK( |
| num_cold * kNumLookupsOfColdKeys + num_hot * kNumLookupsOfHotKeys == |
| indices.size(), |
| ""); |
| // After constructing the array we probe it with absl::string_views built from |
| // test_strings. This means operator== won't see equal pointers, so |
| // it'll have to check for equal lengths and equal characters. |
| std::vector<std::string> test_strings(indices.size()); |
| for (int i = 0; i < indices.size(); i++) { |
| test_strings[i] = keys[indices[i]]; |
| } |
| |
| // Run the benchmark. It includes map construction but is mostly |
| // map lookups. |
| for (auto _ : state) { |
| Map h(table_size); |
| for (int i = 0; i < table_size; i++) { |
| h[keys[i]] = i * 2; |
| } |
| ABSL_RAW_CHECK(h.size() == table_size, ""); |
| uint64_t sum = 0; |
| for (int i = 0; i < indices.size(); i++) { |
| sum += h[test_strings[i]]; |
| } |
| benchmark::DoNotOptimize(sum); |
| } |
| } |
| |
| void BM_StdMap_4(benchmark::State& state) { |
| StringViewMapBenchmark<EasyMap, 4>(state); |
| } |
| BENCHMARK(BM_StdMap_4)->Range(1 << 10, 1 << 16); |
| |
| void BM_StdMap_8(benchmark::State& state) { |
| StringViewMapBenchmark<EasyMap, 8>(state); |
| } |
| BENCHMARK(BM_StdMap_8)->Range(1 << 10, 1 << 16); |
| |
| void BM_CopyToStringNative(benchmark::State& state) { |
| std::string src(state.range(0), 'x'); |
| absl::string_view sv(src); |
| std::string dst; |
| for (auto _ : state) { |
| dst.assign(sv.begin(), sv.end()); |
| } |
| } |
| BENCHMARK(BM_CopyToStringNative)->Range(1 << 3, 1 << 12); |
| |
| void BM_AppendToStringNative(benchmark::State& state) { |
| std::string src(state.range(0), 'x'); |
| absl::string_view sv(src); |
| std::string dst; |
| for (auto _ : state) { |
| dst.clear(); |
| dst.insert(dst.end(), sv.begin(), sv.end()); |
| } |
| } |
| BENCHMARK(BM_AppendToStringNative)->Range(1 << 3, 1 << 12); |
| |
| } // namespace |