blob: fe0211de7d5009a7b010ef35653361aae55b37d0 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_H_
#define MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_H_
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/types/optional.h"
#include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h"
#include "api/test/videocodec_test_fixture.h"
#include "api/video/encoded_image.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_bitrate_allocator.h"
#include "api/video/video_frame.h"
#include "api/video_codecs/video_decoder.h"
#include "api/video_codecs/video_encoder.h"
#include "modules/include/module_common_types.h"
#include "modules/video_coding/codecs/test/videocodec_test_stats_impl.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/utility/ivf_file_writer.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/constructor_magic.h"
#include "rtc_base/synchronization/sequence_checker.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/thread_checker.h"
#include "test/testsupport/frame_reader.h"
#include "test/testsupport/frame_writer.h"
namespace webrtc {
namespace test {
// Handles encoding/decoding of video using the VideoEncoder/VideoDecoder
// interfaces. This is done in a sequential manner in order to be able to
// measure times properly.
// The class processes a frame at the time for the configured input file.
// It maintains state of where in the source input file the processing is at.
class VideoProcessor {
public:
using VideoDecoderList = std::vector<std::unique_ptr<VideoDecoder>>;
using LayerKey = std::pair<int /* spatial_idx */, int /* temporal_idx */>;
using IvfFileWriterMap = std::map<LayerKey, std::unique_ptr<IvfFileWriter>>;
// TODO(brandtr): Consider changing FrameWriterList to be a FrameWriterMap,
// to be able to save different TLs separately.
using FrameWriterList = std::vector<std::unique_ptr<FrameWriter>>;
VideoProcessor(webrtc::VideoEncoder* encoder,
VideoDecoderList* decoders,
FrameReader* input_frame_reader,
const VideoCodecTestFixture::Config& config,
VideoCodecTestStatsImpl* stats,
IvfFileWriterMap* encoded_frame_writers,
FrameWriterList* decoded_frame_writers);
~VideoProcessor();
// Reads a frame and sends it to the encoder. When the encode callback
// is received, the encoded frame is buffered. After encoding is finished
// buffered frame is sent to decoder. Quality evaluation is done in
// the decode callback.
void ProcessFrame();
// Updates the encoder with target rates. Must be called at least once.
void SetRates(size_t bitrate_kbps, double framerate_fps);
private:
class VideoProcessorEncodeCompleteCallback
: public webrtc::EncodedImageCallback {
public:
explicit VideoProcessorEncodeCompleteCallback(
VideoProcessor* video_processor)
: video_processor_(video_processor),
task_queue_(TaskQueueBase::Current()) {
RTC_DCHECK(video_processor_);
RTC_DCHECK(task_queue_);
}
Result OnEncodedImage(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo* codec_specific_info,
const webrtc::RTPFragmentationHeader* fragmentation) override {
RTC_CHECK(codec_specific_info);
// Post the callback to the right task queue, if needed.
if (!task_queue_->IsCurrent()) {
task_queue_->PostTask(absl::make_unique<EncodeCallbackTask>(
video_processor_, encoded_image, codec_specific_info));
return Result(Result::OK, 0);
}
video_processor_->FrameEncoded(encoded_image, *codec_specific_info);
return Result(Result::OK, 0);
}
private:
class EncodeCallbackTask : public QueuedTask {
public:
EncodeCallbackTask(VideoProcessor* video_processor,
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo* codec_specific_info)
: video_processor_(video_processor),
encoded_image_(encoded_image),
codec_specific_info_(*codec_specific_info) {
encoded_image_.Retain();
}
bool Run() override {
video_processor_->FrameEncoded(encoded_image_, codec_specific_info_);
return true;
}
private:
VideoProcessor* const video_processor_;
webrtc::EncodedImage encoded_image_;
const webrtc::CodecSpecificInfo codec_specific_info_;
};
VideoProcessor* const video_processor_;
TaskQueueBase* const task_queue_;
};
class VideoProcessorDecodeCompleteCallback
: public webrtc::DecodedImageCallback {
public:
explicit VideoProcessorDecodeCompleteCallback(
VideoProcessor* video_processor,
size_t simulcast_svc_idx)
: video_processor_(video_processor),
simulcast_svc_idx_(simulcast_svc_idx),
task_queue_(TaskQueueBase::Current()) {
RTC_DCHECK(video_processor_);
RTC_DCHECK(task_queue_);
}
int32_t Decoded(webrtc::VideoFrame& image) override;
int32_t Decoded(webrtc::VideoFrame& image,
int64_t decode_time_ms) override {
return Decoded(image);
}
void Decoded(webrtc::VideoFrame& image,
absl::optional<int32_t> decode_time_ms,
absl::optional<uint8_t> qp) override {
Decoded(image);
}
private:
VideoProcessor* const video_processor_;
const size_t simulcast_svc_idx_;
TaskQueueBase* const task_queue_;
};
// Invoked by the callback adapter when a frame has completed encoding.
void FrameEncoded(const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo& codec_specific);
// Invoked by the callback adapter when a frame has completed decoding.
void FrameDecoded(const webrtc::VideoFrame& image, size_t simulcast_svc_idx);
void DecodeFrame(const EncodedImage& encoded_image, size_t simulcast_svc_idx);
// In order to supply the SVC decoders with super frames containing all
// lower layer frames, we merge and store the layer frames in this method.
const webrtc::EncodedImage* BuildAndStoreSuperframe(
const EncodedImage& encoded_image,
const VideoCodecType codec,
size_t frame_number,
size_t simulcast_svc_idx,
bool inter_layer_predicted) RTC_RUN_ON(sequence_checker_);
// Test input/output.
VideoCodecTestFixture::Config config_ RTC_GUARDED_BY(sequence_checker_);
const size_t num_simulcast_or_spatial_layers_;
VideoCodecTestStatsImpl* const stats_;
// Codecs.
webrtc::VideoEncoder* const encoder_;
VideoDecoderList* const decoders_;
const std::unique_ptr<VideoBitrateAllocator> bitrate_allocator_;
VideoBitrateAllocation bitrate_allocation_ RTC_GUARDED_BY(sequence_checker_);
double framerate_fps_ RTC_GUARDED_BY(sequence_checker_);
// Adapters for the codec callbacks.
VideoProcessorEncodeCompleteCallback encode_callback_;
// Assign separate callback object to each decoder. This allows us to identify
// decoded layer in frame decode callback.
// simulcast_svc_idx -> decode callback.
std::vector<std::unique_ptr<VideoProcessorDecodeCompleteCallback>>
decode_callback_;
// Each call to ProcessFrame() will read one frame from |input_frame_reader_|.
FrameReader* const input_frame_reader_;
// Input frames are used as reference for frame quality evaluations.
// Async codecs might queue frames. To handle that we keep input frame
// and release it after corresponding coded frame is decoded and quality
// measurement is done.
// frame_number -> frame.
std::map<size_t, VideoFrame> input_frames_ RTC_GUARDED_BY(sequence_checker_);
// Encoder delivers coded frame layer-by-layer. We store coded frames and
// then, after all layers are encoded, decode them. Such separation of
// frame processing on superframe level simplifies encoding/decoding time
// measurement.
// simulcast_svc_idx -> merged SVC encoded frame.
std::vector<EncodedImage> merged_encoded_frames_
RTC_GUARDED_BY(sequence_checker_);
// These (optional) file writers are used to persistently store the encoded
// and decoded bitstreams. Each frame writer is enabled by being non-null.
IvfFileWriterMap* const encoded_frame_writers_;
FrameWriterList* const decoded_frame_writers_;
// Metadata for inputed/encoded/decoded frames. Used for frame identification,
// frame drop detection, etc. We assume that encoded/decoded frames are
// ordered within each simulcast/spatial layer, but we do not make any
// assumptions of frame ordering between layers.
size_t last_inputed_frame_num_ RTC_GUARDED_BY(sequence_checker_);
size_t last_inputed_timestamp_ RTC_GUARDED_BY(sequence_checker_);
// simulcast_svc_idx -> encode status.
std::vector<bool> first_encoded_frame_ RTC_GUARDED_BY(sequence_checker_);
// simulcast_svc_idx -> frame_number.
std::vector<size_t> last_encoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
// simulcast_svc_idx -> decode status.
std::vector<bool> first_decoded_frame_ RTC_GUARDED_BY(sequence_checker_);
// simulcast_svc_idx -> frame_number.
std::vector<size_t> last_decoded_frame_num_ RTC_GUARDED_BY(sequence_checker_);
// simulcast_svc_idx -> buffer.
std::vector<rtc::Buffer> decoded_frame_buffer_
RTC_GUARDED_BY(sequence_checker_);
// Time spent in frame encode callback. It is accumulated for layers and
// reset when frame encode starts. When next layer is encoded post-encode time
// is substracted from measured encode time. Thus we get pure encode time.
int64_t post_encode_time_ns_ RTC_GUARDED_BY(sequence_checker_);
// This class must be operated on a TaskQueue.
SequenceChecker sequence_checker_;
RTC_DISALLOW_COPY_AND_ASSIGN(VideoProcessor);
};
} // namespace test
} // namespace webrtc
#endif // MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_H_