| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2010 Xiph.Org Foundation |
| Copyright (c) 2008 Gregory Maxwell |
| Written by Jean-Marc Valin and Gregory Maxwell */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #define CELT_DECODER_C |
| |
| #include "cpu_support.h" |
| #include "os_support.h" |
| #include "mdct.h" |
| #include <math.h> |
| #include "celt.h" |
| #include "pitch.h" |
| #include "bands.h" |
| #include "modes.h" |
| #include "entcode.h" |
| #include "quant_bands.h" |
| #include "rate.h" |
| #include "stack_alloc.h" |
| #include "mathops.h" |
| #include "float_cast.h" |
| #include <stdarg.h> |
| #include "celt_lpc.h" |
| #include "vq.h" |
| |
| #if defined(SMALL_FOOTPRINT) && defined(FIXED_POINT) |
| #define NORM_ALIASING_HACK |
| #endif |
| /**********************************************************************/ |
| /* */ |
| /* DECODER */ |
| /* */ |
| /**********************************************************************/ |
| #define DECODE_BUFFER_SIZE 2048 |
| |
| /** Decoder state |
| @brief Decoder state |
| */ |
| struct OpusCustomDecoder { |
| const OpusCustomMode *mode; |
| int overlap; |
| int channels; |
| int stream_channels; |
| |
| int downsample; |
| int start, end; |
| int signalling; |
| int disable_inv; |
| int arch; |
| |
| /* Everything beyond this point gets cleared on a reset */ |
| #define DECODER_RESET_START rng |
| |
| opus_uint32 rng; |
| int error; |
| int last_pitch_index; |
| int loss_count; |
| int skip_plc; |
| int postfilter_period; |
| int postfilter_period_old; |
| opus_val16 postfilter_gain; |
| opus_val16 postfilter_gain_old; |
| int postfilter_tapset; |
| int postfilter_tapset_old; |
| |
| celt_sig preemph_memD[2]; |
| |
| celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */ |
| /* opus_val16 lpc[], Size = channels*LPC_ORDER */ |
| /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */ |
| /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */ |
| /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */ |
| /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */ |
| }; |
| |
| int celt_decoder_get_size(int channels) |
| { |
| const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
| return opus_custom_decoder_get_size(mode, channels); |
| } |
| |
| OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels) |
| { |
| int size = sizeof(struct CELTDecoder) |
| + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig) |
| + channels*LPC_ORDER*sizeof(opus_val16) |
| + 4*2*mode->nbEBands*sizeof(opus_val16); |
| return size; |
| } |
| |
| #ifdef CUSTOM_MODES |
| CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error) |
| { |
| int ret; |
| CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels)); |
| ret = opus_custom_decoder_init(st, mode, channels); |
| if (ret != OPUS_OK) |
| { |
| opus_custom_decoder_destroy(st); |
| st = NULL; |
| } |
| if (error) |
| *error = ret; |
| return st; |
| } |
| #endif /* CUSTOM_MODES */ |
| |
| int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels) |
| { |
| int ret; |
| ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); |
| if (ret != OPUS_OK) |
| return ret; |
| st->downsample = resampling_factor(sampling_rate); |
| if (st->downsample==0) |
| return OPUS_BAD_ARG; |
| else |
| return OPUS_OK; |
| } |
| |
| OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels) |
| { |
| if (channels < 0 || channels > 2) |
| return OPUS_BAD_ARG; |
| |
| if (st==NULL) |
| return OPUS_ALLOC_FAIL; |
| |
| OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels)); |
| |
| st->mode = mode; |
| st->overlap = mode->overlap; |
| st->stream_channels = st->channels = channels; |
| |
| st->downsample = 1; |
| st->start = 0; |
| st->end = st->mode->effEBands; |
| st->signalling = 1; |
| #ifdef ENABLE_UPDATE_DRAFT |
| st->disable_inv = channels == 1; |
| #else |
| st->disable_inv = 0; |
| #endif |
| st->arch = opus_select_arch(); |
| |
| opus_custom_decoder_ctl(st, OPUS_RESET_STATE); |
| |
| return OPUS_OK; |
| } |
| |
| #ifdef CUSTOM_MODES |
| void opus_custom_decoder_destroy(CELTDecoder *st) |
| { |
| opus_free(st); |
| } |
| #endif /* CUSTOM_MODES */ |
| |
| #ifndef CUSTOM_MODES |
| /* Special case for stereo with no downsampling and no accumulation. This is |
| quite common and we can make it faster by processing both channels in the |
| same loop, reducing overhead due to the dependency loop in the IIR filter. */ |
| static void deemphasis_stereo_simple(celt_sig *in[], opus_val16 *pcm, int N, const opus_val16 coef0, |
| celt_sig *mem) |
| { |
| celt_sig * OPUS_RESTRICT x0; |
| celt_sig * OPUS_RESTRICT x1; |
| celt_sig m0, m1; |
| int j; |
| x0=in[0]; |
| x1=in[1]; |
| m0 = mem[0]; |
| m1 = mem[1]; |
| for (j=0;j<N;j++) |
| { |
| celt_sig tmp0, tmp1; |
| /* Add VERY_SMALL to x[] first to reduce dependency chain. */ |
| tmp0 = x0[j] + VERY_SMALL + m0; |
| tmp1 = x1[j] + VERY_SMALL + m1; |
| m0 = MULT16_32_Q15(coef0, tmp0); |
| m1 = MULT16_32_Q15(coef0, tmp1); |
| pcm[2*j ] = SCALEOUT(SIG2WORD16(tmp0)); |
| pcm[2*j+1] = SCALEOUT(SIG2WORD16(tmp1)); |
| } |
| mem[0] = m0; |
| mem[1] = m1; |
| } |
| #endif |
| |
| #ifndef RESYNTH |
| static |
| #endif |
| void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, |
| celt_sig *mem, int accum) |
| { |
| int c; |
| int Nd; |
| int apply_downsampling=0; |
| opus_val16 coef0; |
| VARDECL(celt_sig, scratch); |
| SAVE_STACK; |
| #ifndef CUSTOM_MODES |
| /* Short version for common case. */ |
| if (downsample == 1 && C == 2 && !accum) |
| { |
| deemphasis_stereo_simple(in, pcm, N, coef[0], mem); |
| return; |
| } |
| #endif |
| #ifndef FIXED_POINT |
| (void)accum; |
| celt_assert(accum==0); |
| #endif |
| ALLOC(scratch, N, celt_sig); |
| coef0 = coef[0]; |
| Nd = N/downsample; |
| c=0; do { |
| int j; |
| celt_sig * OPUS_RESTRICT x; |
| opus_val16 * OPUS_RESTRICT y; |
| celt_sig m = mem[c]; |
| x =in[c]; |
| y = pcm+c; |
| #ifdef CUSTOM_MODES |
| if (coef[1] != 0) |
| { |
| opus_val16 coef1 = coef[1]; |
| opus_val16 coef3 = coef[3]; |
| for (j=0;j<N;j++) |
| { |
| celt_sig tmp = x[j] + m + VERY_SMALL; |
| m = MULT16_32_Q15(coef0, tmp) |
| - MULT16_32_Q15(coef1, x[j]); |
| tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2); |
| scratch[j] = tmp; |
| } |
| apply_downsampling=1; |
| } else |
| #endif |
| if (downsample>1) |
| { |
| /* Shortcut for the standard (non-custom modes) case */ |
| for (j=0;j<N;j++) |
| { |
| celt_sig tmp = x[j] + VERY_SMALL + m; |
| m = MULT16_32_Q15(coef0, tmp); |
| scratch[j] = tmp; |
| } |
| apply_downsampling=1; |
| } else { |
| /* Shortcut for the standard (non-custom modes) case */ |
| #ifdef FIXED_POINT |
| if (accum) |
| { |
| for (j=0;j<N;j++) |
| { |
| celt_sig tmp = x[j] + m + VERY_SMALL; |
| m = MULT16_32_Q15(coef0, tmp); |
| y[j*C] = SAT16(ADD32(y[j*C], SCALEOUT(SIG2WORD16(tmp)))); |
| } |
| } else |
| #endif |
| { |
| for (j=0;j<N;j++) |
| { |
| celt_sig tmp = x[j] + VERY_SMALL + m; |
| m = MULT16_32_Q15(coef0, tmp); |
| y[j*C] = SCALEOUT(SIG2WORD16(tmp)); |
| } |
| } |
| } |
| mem[c] = m; |
| |
| if (apply_downsampling) |
| { |
| /* Perform down-sampling */ |
| #ifdef FIXED_POINT |
| if (accum) |
| { |
| for (j=0;j<Nd;j++) |
| y[j*C] = SAT16(ADD32(y[j*C], SCALEOUT(SIG2WORD16(scratch[j*downsample])))); |
| } else |
| #endif |
| { |
| for (j=0;j<Nd;j++) |
| y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample])); |
| } |
| } |
| } while (++c<C); |
| RESTORE_STACK; |
| } |
| |
| #ifndef RESYNTH |
| static |
| #endif |
| void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[], |
| opus_val16 *oldBandE, int start, int effEnd, int C, int CC, |
| int isTransient, int LM, int downsample, |
| int silence, int arch) |
| { |
| int c, i; |
| int M; |
| int b; |
| int B; |
| int N, NB; |
| int shift; |
| int nbEBands; |
| int overlap; |
| VARDECL(celt_sig, freq); |
| SAVE_STACK; |
| |
| overlap = mode->overlap; |
| nbEBands = mode->nbEBands; |
| N = mode->shortMdctSize<<LM; |
| ALLOC(freq, N, celt_sig); /**< Interleaved signal MDCTs */ |
| M = 1<<LM; |
| |
| if (isTransient) |
| { |
| B = M; |
| NB = mode->shortMdctSize; |
| shift = mode->maxLM; |
| } else { |
| B = 1; |
| NB = mode->shortMdctSize<<LM; |
| shift = mode->maxLM-LM; |
| } |
| |
| if (CC==2&&C==1) |
| { |
| /* Copying a mono streams to two channels */ |
| celt_sig *freq2; |
| denormalise_bands(mode, X, freq, oldBandE, start, effEnd, M, |
| downsample, silence); |
| /* Store a temporary copy in the output buffer because the IMDCT destroys its input. */ |
| freq2 = out_syn[1]+overlap/2; |
| OPUS_COPY(freq2, freq, N); |
| for (b=0;b<B;b++) |
| clt_mdct_backward(&mode->mdct, &freq2[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch); |
| for (b=0;b<B;b++) |
| clt_mdct_backward(&mode->mdct, &freq[b], out_syn[1]+NB*b, mode->window, overlap, shift, B, arch); |
| } else if (CC==1&&C==2) |
| { |
| /* Downmixing a stereo stream to mono */ |
| celt_sig *freq2; |
| freq2 = out_syn[0]+overlap/2; |
| denormalise_bands(mode, X, freq, oldBandE, start, effEnd, M, |
| downsample, silence); |
| /* Use the output buffer as temp array before downmixing. */ |
| denormalise_bands(mode, X+N, freq2, oldBandE+nbEBands, start, effEnd, M, |
| downsample, silence); |
| for (i=0;i<N;i++) |
| freq[i] = ADD32(HALF32(freq[i]), HALF32(freq2[i])); |
| for (b=0;b<B;b++) |
| clt_mdct_backward(&mode->mdct, &freq[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch); |
| } else { |
| /* Normal case (mono or stereo) */ |
| c=0; do { |
| denormalise_bands(mode, X+c*N, freq, oldBandE+c*nbEBands, start, effEnd, M, |
| downsample, silence); |
| for (b=0;b<B;b++) |
| clt_mdct_backward(&mode->mdct, &freq[b], out_syn[c]+NB*b, mode->window, overlap, shift, B, arch); |
| } while (++c<CC); |
| } |
| /* Saturate IMDCT output so that we can't overflow in the pitch postfilter |
| or in the */ |
| c=0; do { |
| for (i=0;i<N;i++) |
| out_syn[c][i] = SATURATE(out_syn[c][i], SIG_SAT); |
| } while (++c<CC); |
| RESTORE_STACK; |
| } |
| |
| static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec) |
| { |
| int i, curr, tf_select; |
| int tf_select_rsv; |
| int tf_changed; |
| int logp; |
| opus_uint32 budget; |
| opus_uint32 tell; |
| |
| budget = dec->storage*8; |
| tell = ec_tell(dec); |
| logp = isTransient ? 2 : 4; |
| tf_select_rsv = LM>0 && tell+logp+1<=budget; |
| budget -= tf_select_rsv; |
| tf_changed = curr = 0; |
| for (i=start;i<end;i++) |
| { |
| if (tell+logp<=budget) |
| { |
| curr ^= ec_dec_bit_logp(dec, logp); |
| tell = ec_tell(dec); |
| tf_changed |= curr; |
| } |
| tf_res[i] = curr; |
| logp = isTransient ? 4 : 5; |
| } |
| tf_select = 0; |
| if (tf_select_rsv && |
| tf_select_table[LM][4*isTransient+0+tf_changed] != |
| tf_select_table[LM][4*isTransient+2+tf_changed]) |
| { |
| tf_select = ec_dec_bit_logp(dec, 1); |
| } |
| for (i=start;i<end;i++) |
| { |
| tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
| } |
| } |
| |
| /* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save |
| CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The |
| current value corresponds to a pitch of 66.67 Hz. */ |
| #define PLC_PITCH_LAG_MAX (720) |
| /* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a |
| pitch of 480 Hz. */ |
| #define PLC_PITCH_LAG_MIN (100) |
| |
| static int celt_plc_pitch_search(celt_sig *decode_mem[2], int C, int arch) |
| { |
| int pitch_index; |
| VARDECL( opus_val16, lp_pitch_buf ); |
| SAVE_STACK; |
| ALLOC( lp_pitch_buf, DECODE_BUFFER_SIZE>>1, opus_val16 ); |
| pitch_downsample(decode_mem, lp_pitch_buf, |
| DECODE_BUFFER_SIZE, C, arch); |
| pitch_search(lp_pitch_buf+(PLC_PITCH_LAG_MAX>>1), lp_pitch_buf, |
| DECODE_BUFFER_SIZE-PLC_PITCH_LAG_MAX, |
| PLC_PITCH_LAG_MAX-PLC_PITCH_LAG_MIN, &pitch_index, arch); |
| pitch_index = PLC_PITCH_LAG_MAX-pitch_index; |
| RESTORE_STACK; |
| return pitch_index; |
| } |
| |
| static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) |
| { |
| int c; |
| int i; |
| const int C = st->channels; |
| celt_sig *decode_mem[2]; |
| celt_sig *out_syn[2]; |
| opus_val16 *lpc; |
| opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
| const OpusCustomMode *mode; |
| int nbEBands; |
| int overlap; |
| int start; |
| int loss_count; |
| int noise_based; |
| const opus_int16 *eBands; |
| SAVE_STACK; |
| |
| mode = st->mode; |
| nbEBands = mode->nbEBands; |
| overlap = mode->overlap; |
| eBands = mode->eBands; |
| |
| c=0; do { |
| decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); |
| out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N; |
| } while (++c<C); |
| lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*C); |
| oldBandE = lpc+C*LPC_ORDER; |
| oldLogE = oldBandE + 2*nbEBands; |
| oldLogE2 = oldLogE + 2*nbEBands; |
| backgroundLogE = oldLogE2 + 2*nbEBands; |
| |
| loss_count = st->loss_count; |
| start = st->start; |
| noise_based = loss_count >= 5 || start != 0 || st->skip_plc; |
| if (noise_based) |
| { |
| /* Noise-based PLC/CNG */ |
| #ifdef NORM_ALIASING_HACK |
| celt_norm *X; |
| #else |
| VARDECL(celt_norm, X); |
| #endif |
| opus_uint32 seed; |
| int end; |
| int effEnd; |
| opus_val16 decay; |
| end = st->end; |
| effEnd = IMAX(start, IMIN(end, mode->effEBands)); |
| |
| #ifdef NORM_ALIASING_HACK |
| /* This is an ugly hack that breaks aliasing rules and would be easily broken, |
| but it saves almost 4kB of stack. */ |
| X = (celt_norm*)(out_syn[C-1]+overlap/2); |
| #else |
| ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| #endif |
| |
| /* Energy decay */ |
| decay = loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT); |
| c=0; do |
| { |
| for (i=start;i<end;i++) |
| oldBandE[c*nbEBands+i] = MAX16(backgroundLogE[c*nbEBands+i], oldBandE[c*nbEBands+i] - decay); |
| } while (++c<C); |
| seed = st->rng; |
| for (c=0;c<C;c++) |
| { |
| for (i=start;i<effEnd;i++) |
| { |
| int j; |
| int boffs; |
| int blen; |
| boffs = N*c+(eBands[i]<<LM); |
| blen = (eBands[i+1]-eBands[i])<<LM; |
| for (j=0;j<blen;j++) |
| { |
| seed = celt_lcg_rand(seed); |
| X[boffs+j] = (celt_norm)((opus_int32)seed>>20); |
| } |
| renormalise_vector(X+boffs, blen, Q15ONE, st->arch); |
| } |
| } |
| st->rng = seed; |
| |
| c=0; do { |
| OPUS_MOVE(decode_mem[c], decode_mem[c]+N, |
| DECODE_BUFFER_SIZE-N+(overlap>>1)); |
| } while (++c<C); |
| |
| celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd, C, C, 0, LM, st->downsample, 0, st->arch); |
| } else { |
| /* Pitch-based PLC */ |
| const opus_val16 *window; |
| opus_val16 *exc; |
| opus_val16 fade = Q15ONE; |
| int pitch_index; |
| VARDECL(opus_val32, etmp); |
| VARDECL(opus_val16, _exc); |
| |
| if (loss_count == 0) |
| { |
| st->last_pitch_index = pitch_index = celt_plc_pitch_search(decode_mem, C, st->arch); |
| } else { |
| pitch_index = st->last_pitch_index; |
| fade = QCONST16(.8f,15); |
| } |
| |
| ALLOC(etmp, overlap, opus_val32); |
| ALLOC(_exc, MAX_PERIOD+LPC_ORDER, opus_val16); |
| exc = _exc+LPC_ORDER; |
| window = mode->window; |
| c=0; do { |
| opus_val16 decay; |
| opus_val16 attenuation; |
| opus_val32 S1=0; |
| celt_sig *buf; |
| int extrapolation_offset; |
| int extrapolation_len; |
| int exc_length; |
| int j; |
| |
| buf = decode_mem[c]; |
| for (i=0;i<MAX_PERIOD;i++) { |
| exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT); |
| } |
| |
| if (loss_count == 0) |
| { |
| opus_val32 ac[LPC_ORDER+1]; |
| /* Compute LPC coefficients for the last MAX_PERIOD samples before |
| the first loss so we can work in the excitation-filter domain. */ |
| _celt_autocorr(exc, ac, window, overlap, |
| LPC_ORDER, MAX_PERIOD, st->arch); |
| /* Add a noise floor of -40 dB. */ |
| #ifdef FIXED_POINT |
| ac[0] += SHR32(ac[0],13); |
| #else |
| ac[0] *= 1.0001f; |
| #endif |
| /* Use lag windowing to stabilize the Levinson-Durbin recursion. */ |
| for (i=1;i<=LPC_ORDER;i++) |
| { |
| /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/ |
| #ifdef FIXED_POINT |
| ac[i] -= MULT16_32_Q15(2*i*i, ac[i]); |
| #else |
| ac[i] -= ac[i]*(0.008f*0.008f)*i*i; |
| #endif |
| } |
| _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER); |
| #ifdef FIXED_POINT |
| /* For fixed-point, apply bandwidth expansion until we can guarantee that |
| no overflow can happen in the IIR filter. This means: |
| 32768*sum(abs(filter)) < 2^31 */ |
| while (1) { |
| opus_val16 tmp=Q15ONE; |
| opus_val32 sum=QCONST16(1., SIG_SHIFT); |
| for (i=0;i<LPC_ORDER;i++) |
| sum += ABS16(lpc[c*LPC_ORDER+i]); |
| if (sum < 65535) break; |
| for (i=0;i<LPC_ORDER;i++) |
| { |
| tmp = MULT16_16_Q15(QCONST16(.99f,15), tmp); |
| lpc[c*LPC_ORDER+i] = MULT16_16_Q15(lpc[c*LPC_ORDER+i], tmp); |
| } |
| } |
| #endif |
| } |
| /* We want the excitation for 2 pitch periods in order to look for a |
| decaying signal, but we can't get more than MAX_PERIOD. */ |
| exc_length = IMIN(2*pitch_index, MAX_PERIOD); |
| /* Initialize the LPC history with the samples just before the start |
| of the region for which we're computing the excitation. */ |
| { |
| for (i=0;i<LPC_ORDER;i++) |
| { |
| exc[MAX_PERIOD-exc_length-LPC_ORDER+i] = |
| ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-LPC_ORDER+i], SIG_SHIFT); |
| } |
| /* Compute the excitation for exc_length samples before the loss. */ |
| celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER, |
| exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, st->arch); |
| } |
| |
| /* Check if the waveform is decaying, and if so how fast. |
| We do this to avoid adding energy when concealing in a segment |
| with decaying energy. */ |
| { |
| opus_val32 E1=1, E2=1; |
| int decay_length; |
| #ifdef FIXED_POINT |
| int shift = IMAX(0,2*celt_zlog2(celt_maxabs16(&exc[MAX_PERIOD-exc_length], exc_length))-20); |
| #endif |
| decay_length = exc_length>>1; |
| for (i=0;i<decay_length;i++) |
| { |
| opus_val16 e; |
| e = exc[MAX_PERIOD-decay_length+i]; |
| E1 += SHR32(MULT16_16(e, e), shift); |
| e = exc[MAX_PERIOD-2*decay_length+i]; |
| E2 += SHR32(MULT16_16(e, e), shift); |
| } |
| E1 = MIN32(E1, E2); |
| decay = celt_sqrt(frac_div32(SHR32(E1, 1), E2)); |
| } |
| |
| /* Move the decoder memory one frame to the left to give us room to |
| add the data for the new frame. We ignore the overlap that extends |
| past the end of the buffer, because we aren't going to use it. */ |
| OPUS_MOVE(buf, buf+N, DECODE_BUFFER_SIZE-N); |
| |
| /* Extrapolate from the end of the excitation with a period of |
| "pitch_index", scaling down each period by an additional factor of |
| "decay". */ |
| extrapolation_offset = MAX_PERIOD-pitch_index; |
| /* We need to extrapolate enough samples to cover a complete MDCT |
| window (including overlap/2 samples on both sides). */ |
| extrapolation_len = N+overlap; |
| /* We also apply fading if this is not the first loss. */ |
| attenuation = MULT16_16_Q15(fade, decay); |
| for (i=j=0;i<extrapolation_len;i++,j++) |
| { |
| opus_val16 tmp; |
| if (j >= pitch_index) { |
| j -= pitch_index; |
| attenuation = MULT16_16_Q15(attenuation, decay); |
| } |
| buf[DECODE_BUFFER_SIZE-N+i] = |
| SHL32(EXTEND32(MULT16_16_Q15(attenuation, |
| exc[extrapolation_offset+j])), SIG_SHIFT); |
| /* Compute the energy of the previously decoded signal whose |
| excitation we're copying. */ |
| tmp = ROUND16( |
| buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j], |
| SIG_SHIFT); |
| S1 += SHR32(MULT16_16(tmp, tmp), 10); |
| } |
| { |
| opus_val16 lpc_mem[LPC_ORDER]; |
| /* Copy the last decoded samples (prior to the overlap region) to |
| synthesis filter memory so we can have a continuous signal. */ |
| for (i=0;i<LPC_ORDER;i++) |
| lpc_mem[i] = ROUND16(buf[DECODE_BUFFER_SIZE-N-1-i], SIG_SHIFT); |
| /* Apply the synthesis filter to convert the excitation back into |
| the signal domain. */ |
| celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER, |
| buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER, |
| lpc_mem, st->arch); |
| #ifdef FIXED_POINT |
| for (i=0; i < extrapolation_len; i++) |
| buf[DECODE_BUFFER_SIZE-N+i] = SATURATE(buf[DECODE_BUFFER_SIZE-N+i], SIG_SAT); |
| #endif |
| } |
| |
| /* Check if the synthesis energy is higher than expected, which can |
| happen with the signal changes during our window. If so, |
| attenuate. */ |
| { |
| opus_val32 S2=0; |
| for (i=0;i<extrapolation_len;i++) |
| { |
| opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT); |
| S2 += SHR32(MULT16_16(tmp, tmp), 10); |
| } |
| /* This checks for an "explosion" in the synthesis. */ |
| #ifdef FIXED_POINT |
| if (!(S1 > SHR32(S2,2))) |
| #else |
| /* The float test is written this way to catch NaNs in the output |
| of the IIR filter at the same time. */ |
| if (!(S1 > 0.2f*S2)) |
| #endif |
| { |
| for (i=0;i<extrapolation_len;i++) |
| buf[DECODE_BUFFER_SIZE-N+i] = 0; |
| } else if (S1 < S2) |
| { |
| opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1)); |
| for (i=0;i<overlap;i++) |
| { |
| opus_val16 tmp_g = Q15ONE |
| - MULT16_16_Q15(window[i], Q15ONE-ratio); |
| buf[DECODE_BUFFER_SIZE-N+i] = |
| MULT16_32_Q15(tmp_g, buf[DECODE_BUFFER_SIZE-N+i]); |
| } |
| for (i=overlap;i<extrapolation_len;i++) |
| { |
| buf[DECODE_BUFFER_SIZE-N+i] = |
| MULT16_32_Q15(ratio, buf[DECODE_BUFFER_SIZE-N+i]); |
| } |
| } |
| } |
| |
| /* Apply the pre-filter to the MDCT overlap for the next frame because |
| the post-filter will be re-applied in the decoder after the MDCT |
| overlap. */ |
| comb_filter(etmp, buf+DECODE_BUFFER_SIZE, |
| st->postfilter_period, st->postfilter_period, overlap, |
| -st->postfilter_gain, -st->postfilter_gain, |
| st->postfilter_tapset, st->postfilter_tapset, NULL, 0, st->arch); |
| |
| /* Simulate TDAC on the concealed audio so that it blends with the |
| MDCT of the next frame. */ |
| for (i=0;i<overlap/2;i++) |
| { |
| buf[DECODE_BUFFER_SIZE+i] = |
| MULT16_32_Q15(window[i], etmp[overlap-1-i]) |
| + MULT16_32_Q15(window[overlap-i-1], etmp[i]); |
| } |
| } while (++c<C); |
| } |
| |
| st->loss_count = loss_count+1; |
| |
| RESTORE_STACK; |
| } |
| |
| int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, |
| int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec, int accum) |
| { |
| int c, i, N; |
| int spread_decision; |
| opus_int32 bits; |
| ec_dec _dec; |
| #ifdef NORM_ALIASING_HACK |
| celt_norm *X; |
| #else |
| VARDECL(celt_norm, X); |
| #endif |
| VARDECL(int, fine_quant); |
| VARDECL(int, pulses); |
| VARDECL(int, cap); |
| VARDECL(int, offsets); |
| VARDECL(int, fine_priority); |
| VARDECL(int, tf_res); |
| VARDECL(unsigned char, collapse_masks); |
| celt_sig *decode_mem[2]; |
| celt_sig *out_syn[2]; |
| opus_val16 *lpc; |
| opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
| |
| int shortBlocks; |
| int isTransient; |
| int intra_ener; |
| const int CC = st->channels; |
| int LM, M; |
| int start; |
| int end; |
| int effEnd; |
| int codedBands; |
| int alloc_trim; |
| int postfilter_pitch; |
| opus_val16 postfilter_gain; |
| int intensity=0; |
| int dual_stereo=0; |
| opus_int32 total_bits; |
| opus_int32 balance; |
| opus_int32 tell; |
| int dynalloc_logp; |
| int postfilter_tapset; |
| int anti_collapse_rsv; |
| int anti_collapse_on=0; |
| int silence; |
| int C = st->stream_channels; |
| const OpusCustomMode *mode; |
| int nbEBands; |
| int overlap; |
| const opus_int16 *eBands; |
| ALLOC_STACK; |
| |
| mode = st->mode; |
| nbEBands = mode->nbEBands; |
| overlap = mode->overlap; |
| eBands = mode->eBands; |
| start = st->start; |
| end = st->end; |
| frame_size *= st->downsample; |
| |
| lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC); |
| oldBandE = lpc+CC*LPC_ORDER; |
| oldLogE = oldBandE + 2*nbEBands; |
| oldLogE2 = oldLogE + 2*nbEBands; |
| backgroundLogE = oldLogE2 + 2*nbEBands; |
| |
| #ifdef CUSTOM_MODES |
| if (st->signalling && data!=NULL) |
| { |
| int data0=data[0]; |
| /* Convert "standard mode" to Opus header */ |
| if (mode->Fs==48000 && mode->shortMdctSize==120) |
| { |
| data0 = fromOpus(data0); |
| if (data0<0) |
| return OPUS_INVALID_PACKET; |
| } |
| st->end = end = IMAX(1, mode->effEBands-2*(data0>>5)); |
| LM = (data0>>3)&0x3; |
| C = 1 + ((data0>>2)&0x1); |
| data++; |
| len--; |
| if (LM>mode->maxLM) |
| return OPUS_INVALID_PACKET; |
| if (frame_size < mode->shortMdctSize<<LM) |
| return OPUS_BUFFER_TOO_SMALL; |
| else |
| frame_size = mode->shortMdctSize<<LM; |
| } else { |
| #else |
| { |
| #endif |
| for (LM=0;LM<=mode->maxLM;LM++) |
| if (mode->shortMdctSize<<LM==frame_size) |
| break; |
| if (LM>mode->maxLM) |
| return OPUS_BAD_ARG; |
| } |
| M=1<<LM; |
| |
| if (len<0 || len>1275 || pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| N = M*mode->shortMdctSize; |
| c=0; do { |
| decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); |
| out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N; |
| } while (++c<CC); |
| |
| effEnd = end; |
| if (effEnd > mode->effEBands) |
| effEnd = mode->effEBands; |
| |
| if (data == NULL || len<=1) |
| { |
| celt_decode_lost(st, N, LM); |
| deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, accum); |
| RESTORE_STACK; |
| return frame_size/st->downsample; |
| } |
| |
| /* Check if there are at least two packets received consecutively before |
| * turning on the pitch-based PLC */ |
| st->skip_plc = st->loss_count != 0; |
| |
| if (dec == NULL) |
| { |
| ec_dec_init(&_dec,(unsigned char*)data,len); |
| dec = &_dec; |
| } |
| |
| if (C==1) |
| { |
| for (i=0;i<nbEBands;i++) |
| oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]); |
| } |
| |
| total_bits = len*8; |
| tell = ec_tell(dec); |
| |
| if (tell >= total_bits) |
| silence = 1; |
| else if (tell==1) |
| silence = ec_dec_bit_logp(dec, 15); |
| else |
| silence = 0; |
| if (silence) |
| { |
| /* Pretend we've read all the remaining bits */ |
| tell = len*8; |
| dec->nbits_total+=tell-ec_tell(dec); |
| } |
| |
| postfilter_gain = 0; |
| postfilter_pitch = 0; |
| postfilter_tapset = 0; |
| if (start==0 && tell+16 <= total_bits) |
| { |
| if(ec_dec_bit_logp(dec, 1)) |
| { |
| int qg, octave; |
| octave = ec_dec_uint(dec, 6); |
| postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1; |
| qg = ec_dec_bits(dec, 3); |
| if (ec_tell(dec)+2<=total_bits) |
| postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2); |
| postfilter_gain = QCONST16(.09375f,15)*(qg+1); |
| } |
| tell = ec_tell(dec); |
| } |
| |
| if (LM > 0 && tell+3 <= total_bits) |
| { |
| isTransient = ec_dec_bit_logp(dec, 3); |
| tell = ec_tell(dec); |
| } |
| else |
| isTransient = 0; |
| |
| if (isTransient) |
| shortBlocks = M; |
| else |
| shortBlocks = 0; |
| |
| /* Decode the global flags (first symbols in the stream) */ |
| intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0; |
| /* Get band energies */ |
| unquant_coarse_energy(mode, start, end, oldBandE, |
| intra_ener, dec, C, LM); |
| |
| ALLOC(tf_res, nbEBands, int); |
| tf_decode(start, end, isTransient, tf_res, LM, dec); |
| |
| tell = ec_tell(dec); |
| spread_decision = SPREAD_NORMAL; |
| if (tell+4 <= total_bits) |
| spread_decision = ec_dec_icdf(dec, spread_icdf, 5); |
| |
| ALLOC(cap, nbEBands, int); |
| |
| init_caps(mode,cap,LM,C); |
| |
| ALLOC(offsets, nbEBands, int); |
| |
| dynalloc_logp = 6; |
| total_bits<<=BITRES; |
| tell = ec_tell_frac(dec); |
| for (i=start;i<end;i++) |
| { |
| int width, quanta; |
| int dynalloc_loop_logp; |
| int boost; |
| width = C*(eBands[i+1]-eBands[i])<<LM; |
| /* quanta is 6 bits, but no more than 1 bit/sample |
| and no less than 1/8 bit/sample */ |
| quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
| dynalloc_loop_logp = dynalloc_logp; |
| boost = 0; |
| while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i]) |
| { |
| int flag; |
| flag = ec_dec_bit_logp(dec, dynalloc_loop_logp); |
| tell = ec_tell_frac(dec); |
| if (!flag) |
| break; |
| boost += quanta; |
| total_bits -= quanta; |
| dynalloc_loop_logp = 1; |
| } |
| offsets[i] = boost; |
| /* Making dynalloc more likely */ |
| if (boost>0) |
| dynalloc_logp = IMAX(2, dynalloc_logp-1); |
| } |
| |
| ALLOC(fine_quant, nbEBands, int); |
| alloc_trim = tell+(6<<BITRES) <= total_bits ? |
| ec_dec_icdf(dec, trim_icdf, 7) : 5; |
| |
| bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1; |
| anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; |
| bits -= anti_collapse_rsv; |
| |
| ALLOC(pulses, nbEBands, int); |
| ALLOC(fine_priority, nbEBands, int); |
| |
| codedBands = compute_allocation(mode, start, end, offsets, cap, |
| alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, |
| fine_quant, fine_priority, C, LM, dec, 0, 0, 0); |
| |
| unquant_fine_energy(mode, start, end, oldBandE, fine_quant, dec, C); |
| |
| c=0; do { |
| OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap/2); |
| } while (++c<CC); |
| |
| /* Decode fixed codebook */ |
| ALLOC(collapse_masks, C*nbEBands, unsigned char); |
| |
| #ifdef NORM_ALIASING_HACK |
| /* This is an ugly hack that breaks aliasing rules and would be easily broken, |
| but it saves almost 4kB of stack. */ |
| X = (celt_norm*)(out_syn[CC-1]+overlap/2); |
| #else |
| ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| #endif |
| |
| quant_all_bands(0, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks, |
| NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res, |
| len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, 0, |
| st->arch, st->disable_inv); |
| |
| if (anti_collapse_rsv > 0) |
| { |
| anti_collapse_on = ec_dec_bits(dec, 1); |
| } |
| |
| unquant_energy_finalise(mode, start, end, oldBandE, |
| fine_quant, fine_priority, len*8-ec_tell(dec), dec, C); |
| |
| if (anti_collapse_on) |
| anti_collapse(mode, X, collapse_masks, LM, C, N, |
| start, end, oldBandE, oldLogE, oldLogE2, pulses, st->rng, st->arch); |
| |
| if (silence) |
| { |
| for (i=0;i<C*nbEBands;i++) |
| oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
| } |
| |
| celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd, |
| C, CC, isTransient, LM, st->downsample, silence, st->arch); |
| |
| c=0; do { |
| st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD); |
| st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD); |
| comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize, |
| st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset, |
| mode->window, overlap, st->arch); |
| if (LM!=0) |
| comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize, |
| st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset, |
| mode->window, overlap, st->arch); |
| |
| } while (++c<CC); |
| st->postfilter_period_old = st->postfilter_period; |
| st->postfilter_gain_old = st->postfilter_gain; |
| st->postfilter_tapset_old = st->postfilter_tapset; |
| st->postfilter_period = postfilter_pitch; |
| st->postfilter_gain = postfilter_gain; |
| st->postfilter_tapset = postfilter_tapset; |
| if (LM!=0) |
| { |
| st->postfilter_period_old = st->postfilter_period; |
| st->postfilter_gain_old = st->postfilter_gain; |
| st->postfilter_tapset_old = st->postfilter_tapset; |
| } |
| |
| if (C==1) |
| OPUS_COPY(&oldBandE[nbEBands], oldBandE, nbEBands); |
| |
| /* In case start or end were to change */ |
| if (!isTransient) |
| { |
| opus_val16 max_background_increase; |
| OPUS_COPY(oldLogE2, oldLogE, 2*nbEBands); |
| OPUS_COPY(oldLogE, oldBandE, 2*nbEBands); |
| /* In normal circumstances, we only allow the noise floor to increase by |
| up to 2.4 dB/second, but when we're in DTX, we allow up to 6 dB |
| increase for each update.*/ |
| if (st->loss_count < 10) |
| max_background_increase = M*QCONST16(0.001f,DB_SHIFT); |
| else |
| max_background_increase = QCONST16(1.f,DB_SHIFT); |
| for (i=0;i<2*nbEBands;i++) |
| backgroundLogE[i] = MIN16(backgroundLogE[i] + max_background_increase, oldBandE[i]); |
| } else { |
| for (i=0;i<2*nbEBands;i++) |
| oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
| } |
| c=0; do |
| { |
| for (i=0;i<start;i++) |
| { |
| oldBandE[c*nbEBands+i]=0; |
| oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
| } |
| for (i=end;i<nbEBands;i++) |
| { |
| oldBandE[c*nbEBands+i]=0; |
| oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
| } |
| } while (++c<2); |
| st->rng = dec->rng; |
| |
| deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, accum); |
| st->loss_count = 0; |
| RESTORE_STACK; |
| if (ec_tell(dec) > 8*len) |
| return OPUS_INTERNAL_ERROR; |
| if(ec_get_error(dec)) |
| st->error = 1; |
| return frame_size/st->downsample; |
| } |
| |
| |
| #ifdef CUSTOM_MODES |
| |
| #ifdef FIXED_POINT |
| int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
| { |
| return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL, 0); |
| } |
| |
| #ifndef DISABLE_FLOAT_API |
| int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
| { |
| int j, ret, C, N; |
| VARDECL(opus_int16, out); |
| ALLOC_STACK; |
| |
| if (pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| C = st->channels; |
| N = frame_size; |
| |
| ALLOC(out, C*N, opus_int16); |
| ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL, 0); |
| if (ret>0) |
| for (j=0;j<C*ret;j++) |
| pcm[j]=out[j]*(1.f/32768.f); |
| |
| RESTORE_STACK; |
| return ret; |
| } |
| #endif /* DISABLE_FLOAT_API */ |
| |
| #else |
| |
| int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
| { |
| return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL, 0); |
| } |
| |
| int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
| { |
| int j, ret, C, N; |
| VARDECL(celt_sig, out); |
| ALLOC_STACK; |
| |
| if (pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| C = st->channels; |
| N = frame_size; |
| ALLOC(out, C*N, celt_sig); |
| |
| ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL, 0); |
| |
| if (ret>0) |
| for (j=0;j<C*ret;j++) |
| pcm[j] = FLOAT2INT16 (out[j]); |
| |
| RESTORE_STACK; |
| return ret; |
| } |
| |
| #endif |
| #endif /* CUSTOM_MODES */ |
| |
| int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, request); |
| switch (request) |
| { |
| case CELT_SET_START_BAND_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<0 || value>=st->mode->nbEBands) |
| goto bad_arg; |
| st->start = value; |
| } |
| break; |
| case CELT_SET_END_BAND_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<1 || value>st->mode->nbEBands) |
| goto bad_arg; |
| st->end = value; |
| } |
| break; |
| case CELT_SET_CHANNELS_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<1 || value>2) |
| goto bad_arg; |
| st->stream_channels = value; |
| } |
| break; |
| case CELT_GET_AND_CLEAR_ERROR_REQUEST: |
| { |
| opus_int32 *value = va_arg(ap, opus_int32*); |
| if (value==NULL) |
| goto bad_arg; |
| *value=st->error; |
| st->error = 0; |
| } |
| break; |
| case OPUS_GET_LOOKAHEAD_REQUEST: |
| { |
| opus_int32 *value = va_arg(ap, opus_int32*); |
| if (value==NULL) |
| goto bad_arg; |
| *value = st->overlap/st->downsample; |
| } |
| break; |
| case OPUS_RESET_STATE: |
| { |
| int i; |
| opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2; |
| lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels); |
| oldBandE = lpc+st->channels*LPC_ORDER; |
| oldLogE = oldBandE + 2*st->mode->nbEBands; |
| oldLogE2 = oldLogE + 2*st->mode->nbEBands; |
| OPUS_CLEAR((char*)&st->DECODER_RESET_START, |
| opus_custom_decoder_get_size(st->mode, st->channels)- |
| ((char*)&st->DECODER_RESET_START - (char*)st)); |
| for (i=0;i<2*st->mode->nbEBands;i++) |
| oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
| st->skip_plc = 1; |
| } |
| break; |
| case OPUS_GET_PITCH_REQUEST: |
| { |
| opus_int32 *value = va_arg(ap, opus_int32*); |
| if (value==NULL) |
| goto bad_arg; |
| *value = st->postfilter_period; |
| } |
| break; |
| case CELT_GET_MODE_REQUEST: |
| { |
| const CELTMode ** value = va_arg(ap, const CELTMode**); |
| if (value==0) |
| goto bad_arg; |
| *value=st->mode; |
| } |
| break; |
| case CELT_SET_SIGNALLING_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->signalling = value; |
| } |
| break; |
| case OPUS_GET_FINAL_RANGE_REQUEST: |
| { |
| opus_uint32 * value = va_arg(ap, opus_uint32 *); |
| if (value==0) |
| goto bad_arg; |
| *value=st->rng; |
| } |
| break; |
| case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if(value<0 || value>1) |
| { |
| goto bad_arg; |
| } |
| st->disable_inv = value; |
| } |
| break; |
| case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: |
| { |
| opus_int32 *value = va_arg(ap, opus_int32*); |
| if (!value) |
| { |
| goto bad_arg; |
| } |
| *value = st->disable_inv; |
| } |
| break; |
| default: |
| goto bad_request; |
| } |
| va_end(ap); |
| return OPUS_OK; |
| bad_arg: |
| va_end(ap); |
| return OPUS_BAD_ARG; |
| bad_request: |
| va_end(ap); |
| return OPUS_UNIMPLEMENTED; |
| } |