blob: ca44010edac3005af51f90cddf593824f455fa14 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "logging/rtc_event_log/encoder/delta_encoding.h"
#include <algorithm>
#include <limits>
#include <numeric>
#include <string>
#include <tuple>
#include <vector>
#include "absl/types/optional.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
void SetFixedLengthEncoderDeltaSignednessForTesting(bool signedness);
void UnsetFixedLengthEncoderDeltaSignednessForTesting();
namespace {
enum class DeltaSignedness { kNoOverride, kForceUnsigned, kForceSigned };
void MaybeSetSignedness(DeltaSignedness signedness) {
switch (signedness) {
case DeltaSignedness::kNoOverride:
UnsetFixedLengthEncoderDeltaSignednessForTesting();
return;
case DeltaSignedness::kForceUnsigned:
SetFixedLengthEncoderDeltaSignednessForTesting(false);
return;
case DeltaSignedness::kForceSigned:
SetFixedLengthEncoderDeltaSignednessForTesting(true);
return;
}
RTC_NOTREACHED();
}
uint64_t RandomWithMaxBitWidth(Random* prng, uint64_t max_width) {
RTC_DCHECK_GE(max_width, 1u);
RTC_DCHECK_LE(max_width, 64u);
const uint64_t low = prng->Rand(std::numeric_limits<uint32_t>::max());
const uint64_t high =
max_width > 32u ? prng->Rand(std::numeric_limits<uint32_t>::max()) : 0u;
const uint64_t random_before_mask = (high << 32) | low;
if (max_width < 64) {
return random_before_mask & ((static_cast<uint64_t>(1) << max_width) - 1);
} else {
return random_before_mask;
}
}
// Encodes |values| based on |base|, then decodes the result and makes sure
// that it is equal to the original input.
// If |encoded_string| is non-null, the encoded result will also be written
// into it.
void TestEncodingAndDecoding(
absl::optional<uint64_t> base,
const std::vector<absl::optional<uint64_t>>& values,
std::string* encoded_string = nullptr) {
const std::string encoded = EncodeDeltas(base, values);
if (encoded_string) {
*encoded_string = encoded;
}
const std::vector<absl::optional<uint64_t>> decoded =
DecodeDeltas(encoded, base, values.size());
EXPECT_EQ(decoded, values);
}
std::vector<absl::optional<uint64_t>> CreateSequenceByFirstValue(
uint64_t first,
size_t sequence_length) {
std::vector<absl::optional<uint64_t>> sequence(sequence_length);
std::iota(sequence.begin(), sequence.end(), first);
return sequence;
}
std::vector<absl::optional<uint64_t>> CreateSequenceByLastValue(
uint64_t last,
size_t num_values) {
const uint64_t first = last - num_values + 1;
std::vector<absl::optional<uint64_t>> result(num_values);
std::iota(result.begin(), result.end(), first);
return result;
}
// If |sequence_length| is greater than the number of deltas, the sequence of
// deltas will wrap around.
std::vector<absl::optional<uint64_t>> CreateSequenceByOptionalDeltas(
uint64_t first,
const std::vector<absl::optional<uint64_t>>& deltas,
size_t sequence_length) {
RTC_DCHECK_GE(sequence_length, 1);
std::vector<absl::optional<uint64_t>> sequence(sequence_length);
uint64_t previous = first;
for (size_t i = 0, next_delta_index = 0; i < sequence.size(); ++i) {
if (deltas[next_delta_index].has_value()) {
sequence[i] =
absl::optional<uint64_t>(previous + deltas[next_delta_index].value());
previous = sequence[i].value();
}
next_delta_index = (next_delta_index + 1) % deltas.size();
}
return sequence;
}
size_t EncodingLengthUpperBound(size_t delta_max_bit_width,
size_t num_of_deltas,
DeltaSignedness signedness_override) {
absl::optional<size_t> smallest_header_size_bytes;
switch (signedness_override) {
case DeltaSignedness::kNoOverride:
case DeltaSignedness::kForceUnsigned:
smallest_header_size_bytes = 1;
break;
case DeltaSignedness::kForceSigned:
smallest_header_size_bytes = 2;
break;
}
RTC_DCHECK(smallest_header_size_bytes);
return delta_max_bit_width * num_of_deltas + *smallest_header_size_bytes;
}
// If |sequence_length| is greater than the number of deltas, the sequence of
// deltas will wrap around.
std::vector<absl::optional<uint64_t>> CreateSequenceByDeltas(
uint64_t first,
const std::vector<uint64_t>& deltas,
size_t sequence_length) {
RTC_DCHECK(!deltas.empty());
std::vector<absl::optional<uint64_t>> optional_deltas(deltas.size());
for (size_t i = 0; i < deltas.size(); ++i) {
optional_deltas[i] = absl::optional<uint64_t>(deltas[i]);
}
return CreateSequenceByOptionalDeltas(first, optional_deltas,
sequence_length);
}
// Tests of the delta encoding, parameterized by the number of values
// in the sequence created by the test.
class DeltaEncodingTest
: public ::testing::TestWithParam<
std::tuple<DeltaSignedness, size_t, bool, uint64_t>> {
public:
DeltaEncodingTest()
: signedness_(std::get<0>(GetParam())),
num_of_values_(std::get<1>(GetParam())),
optional_values_(std::get<2>(GetParam())),
partial_random_seed_(std::get<3>(GetParam())) {
MaybeSetSignedness(signedness_);
}
~DeltaEncodingTest() override = default;
// Running with the same seed for all variants would make all tests start
// with the same sequence; avoid this by making the seed different.
uint64_t Seed() const {
// Multiply everything but by different primes to produce unique results.
return 2 * static_cast<uint64_t>(signedness_) + 3 * num_of_values_ +
5 * optional_values_ + 7 * partial_random_seed_;
}
const DeltaSignedness signedness_;
const uint64_t num_of_values_;
const bool optional_values_;
const uint64_t partial_random_seed_; // Explained where it's used.
};
TEST_P(DeltaEncodingTest, AllValuesEqualToExistentBaseValue) {
const absl::optional<uint64_t> base(3432);
std::vector<absl::optional<uint64_t>> values(num_of_values_);
std::fill(values.begin(), values.end(), base);
std::string encoded;
TestEncodingAndDecoding(base, values, &encoded);
// Additional requirement - the encoding should be efficient in this
// case - the empty string will be used.
EXPECT_TRUE(encoded.empty());
}
TEST_P(DeltaEncodingTest, AllValuesEqualToNonExistentBaseValue) {
if (!optional_values_) {
return; // Test irrelevant for this case.
}
const absl::optional<uint64_t> base;
std::vector<absl::optional<uint64_t>> values(num_of_values_);
std::fill(values.begin(), values.end(), base);
std::string encoded;
TestEncodingAndDecoding(base, values, &encoded);
// Additional requirement - the encoding should be efficient in this
// case - the empty string will be used.
EXPECT_TRUE(encoded.empty());
}
TEST_P(DeltaEncodingTest, BaseNonExistentButSomeOtherValuesExist) {
if (!optional_values_) {
return; // Test irrelevant for this case.
}
const absl::optional<uint64_t> base;
std::vector<absl::optional<uint64_t>> values(num_of_values_);
Random prng(Seed());
const uint64_t max_bit_width = 1 + prng.Rand(63); // [1, 64]
for (size_t i = 0; i < values.size();) {
// Leave a random number of values as non-existent.
const size_t non_existent_count = prng.Rand(values.size() - i - 1);
i += non_existent_count;
// Assign random values to a random number of values. (At least one, to
// prevent this iteration of the outer loop from being a no-op.)
const size_t existent_count =
std::max<size_t>(prng.Rand(values.size() - i - 1), 1);
for (size_t j = 0; j < existent_count; ++j) {
values[i + j] = RandomWithMaxBitWidth(&prng, max_bit_width);
}
i += existent_count;
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, MinDeltaNoWrapAround) {
const absl::optional<uint64_t> base(3432);
auto values = CreateSequenceByFirstValue(base.value() + 1, num_of_values_);
ASSERT_GT(values[values.size() - 1], base) << "Sanity; must not wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[0] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, BigDeltaNoWrapAround) {
const uint64_t kBigDelta = 132828;
const absl::optional<uint64_t> base(3432);
auto values =
CreateSequenceByFirstValue(base.value() + kBigDelta, num_of_values_);
ASSERT_GT(values[values.size() - 1], base) << "Sanity; must not wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[0] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, MaxDeltaNoWrapAround) {
const absl::optional<uint64_t> base(3432);
auto values = CreateSequenceByLastValue(std::numeric_limits<uint64_t>::max(),
num_of_values_);
ASSERT_GT(values[values.size() - 1], base) << "Sanity; must not wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[0] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, SmallDeltaWithWrapAroundComparedToBase) {
if (optional_values_ && num_of_values_ == 1) {
return; // Inapplicable
}
const absl::optional<uint64_t> base(std::numeric_limits<uint64_t>::max());
auto values = CreateSequenceByDeltas(*base, {1, 10, 3}, num_of_values_);
ASSERT_LT(values[0], base) << "Sanity; must wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, SmallDeltaWithWrapAroundInValueSequence) {
if (num_of_values_ == 1 || (optional_values_ && num_of_values_ < 3)) {
return; // Inapplicable.
}
const absl::optional<uint64_t> base(std::numeric_limits<uint64_t>::max() - 2);
auto values = CreateSequenceByDeltas(*base, {1, 10, 3}, num_of_values_);
ASSERT_LT(values[values.size() - 1], values[0]) << "Sanity; must wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
RTC_DCHECK_GT(values.size() - 1, 1u); // Wrap around not cancelled.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
// Suppress "integral constant overflow" warning; this is the test's focus.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4307)
#endif
TEST_P(DeltaEncodingTest, BigDeltaWithWrapAroundComparedToBase) {
if (optional_values_ && num_of_values_ == 1) {
return; // Inapplicable
}
const uint64_t kBigDelta = 132828;
const absl::optional<uint64_t> base(std::numeric_limits<uint64_t>::max() -
kBigDelta + 3);
auto values =
CreateSequenceByFirstValue(base.value() + kBigDelta, num_of_values_);
ASSERT_LT(values[0], base.value()) << "Sanity; must wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, BigDeltaWithWrapAroundInValueSequence) {
if (num_of_values_ == 1 || (optional_values_ && num_of_values_ < 3)) {
return; // Inapplicable.
}
const uint64_t kBigDelta = 132828;
const absl::optional<uint64_t> base(std::numeric_limits<uint64_t>::max() -
kBigDelta + 3);
auto values = CreateSequenceByFirstValue(std::numeric_limits<uint64_t>::max(),
num_of_values_);
ASSERT_LT(values[values.size() - 1], values[0]) << "Sanity; must wrap around";
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
RTC_DCHECK_GT(values.size() - 1, 1u); // Wrap around not cancelled.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
TEST_P(DeltaEncodingTest, MaxDeltaWithWrapAroundComparedToBase) {
if (optional_values_ && num_of_values_ == 1) {
return; // Inapplicable
}
const absl::optional<uint64_t> base(3432);
auto values = CreateSequenceByFirstValue(*base - 1, num_of_values_);
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
TEST_P(DeltaEncodingTest, MaxDeltaWithWrapAroundInValueSequence) {
if (num_of_values_ == 1 || (optional_values_ && num_of_values_ < 3)) {
return; // Inapplicable.
}
const absl::optional<uint64_t> base(3432);
auto values = CreateSequenceByDeltas(
*base, {0, std::numeric_limits<uint64_t>::max(), 3}, num_of_values_);
// Wraps around continuously by virtue of being max(); will not ASSERT.
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
RTC_DCHECK_GT(values.size() - 1, 1u); // Wrap around not cancelled.
values[1] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
// If num_of_values_ == 1, a zero delta will yield an empty string; that's
// already covered by AllValuesEqualToExistentBaseValue, but it doesn't hurt to
// test again. For all other cases, we have a new test.
TEST_P(DeltaEncodingTest, ZeroDelta) {
const absl::optional<uint64_t> base(3432);
// Arbitrary sequence of deltas with intentional zero deltas, as well as
// consecutive zeros.
const std::vector<uint64_t> deltas = {0, 312, 11, 1, 1, 0, 0, 12,
400321, 3, 3, 12, 5, 0, 6};
auto values = CreateSequenceByDeltas(base.value(), deltas, num_of_values_);
if (optional_values_) {
// Arbitrarily make one of the values non-existent, to force
// optional-supporting encoding.
values[0] = absl::optional<uint64_t>();
}
TestEncodingAndDecoding(base, values);
}
INSTANTIATE_TEST_CASE_P(
SignednessOverrideAndNumberOfValuesInSequence,
DeltaEncodingTest,
::testing::Combine(::testing::Values(DeltaSignedness::kNoOverride,
DeltaSignedness::kForceUnsigned,
DeltaSignedness::kForceSigned),
::testing::Values(1, 2, 100, 10000),
::testing::Bool(),
::testing::Values(10, 20, 30)));
// Tests over the quality of the compression (as opposed to its correctness).
// Not to be confused with tests of runtime efficiency.
class DeltaEncodingCompressionQualityTest
: public ::testing::TestWithParam<
std::tuple<DeltaSignedness, uint64_t, uint64_t, uint64_t>> {
public:
DeltaEncodingCompressionQualityTest()
: signedness_(std::get<0>(GetParam())),
delta_max_bit_width_(std::get<1>(GetParam())),
num_of_values_(std::get<2>(GetParam())),
partial_random_seed_(std::get<3>(GetParam())) {
MaybeSetSignedness(signedness_);
}
~DeltaEncodingCompressionQualityTest() override = default;
// Running with the same seed for all variants would make all tests start
// with the same sequence; avoid this by making the seed different.
uint64_t Seed() const {
// Multiply everything but by different primes to produce unique results.
return 2 * static_cast<uint64_t>(signedness_) + 3 * delta_max_bit_width_ +
5 * delta_max_bit_width_ + 7 * num_of_values_ +
11 * partial_random_seed_;
}
const DeltaSignedness signedness_;
const uint64_t delta_max_bit_width_;
const uint64_t num_of_values_;
const uint64_t partial_random_seed_; // Explained where it's used.
};
// If no wrap-around occurs in the stream, the width of the values does not
// matter to compression performance; only the deltas matter.
TEST_P(DeltaEncodingCompressionQualityTest,
BaseDoesNotAffectEfficiencyIfNoWrapAround) {
// 1. Bases which will not produce a wrap-around.
// 2. The last base - 0xffffffffffffffff - does cause a wrap-around, but
// that still works, because the width is 64 anyway, and does not
// need to be conveyed explicitly in the encoding header.
const uint64_t bases[] = {0, 0x55, 0xffffffff,
std::numeric_limits<uint64_t>::max()};
const size_t kIntendedWrapAroundBaseIndex = arraysize(bases);
std::vector<uint64_t> deltas(num_of_values_);
// Allows us to make sure that the deltas do not produce a wrap-around.
uint64_t last_element[arraysize(bases)];
memcpy(last_element, bases, sizeof(bases));
// Avoid empty |deltas| due to first element causing wrap-around.
deltas[0] = 1;
for (size_t i = 0; i < arraysize(last_element); ++i) {
last_element[i] += 1;
}
Random prng(Seed());
for (size_t i = 1; i < deltas.size(); ++i) {
const uint64_t delta = RandomWithMaxBitWidth(&prng, delta_max_bit_width_);
bool wrap_around = false;
for (size_t j = 0; j < arraysize(last_element); ++j) {
if (j == kIntendedWrapAroundBaseIndex) {
continue;
}
last_element[j] += delta;
if (last_element[j] < bases[j]) {
wrap_around = true;
break;
}
}
if (wrap_around) {
deltas.resize(i);
break;
}
deltas[i] = delta;
}
std::string encodings[arraysize(bases)];
for (size_t i = 0; i < arraysize(bases); ++i) {
const auto values =
CreateSequenceByDeltas(bases[i], deltas, num_of_values_);
// Produce the encoding and write it to encodings[i].
// By using TestEncodingAndDecoding() to do this, we also sanity-test
// the encoding/decoding, though that is not the test's focus.
TestEncodingAndDecoding(bases[i], values, &encodings[i]);
EXPECT_LE(encodings[i].length(),
EncodingLengthUpperBound(delta_max_bit_width_, num_of_values_,
signedness_));
}
// Test focus - all of the encodings should be the same, as they are based
// on the same delta sequence, and do not contain a wrap-around.
for (size_t i = 1; i < arraysize(encodings); ++i) {
EXPECT_EQ(encodings[i], encodings[0]);
}
}
INSTANTIATE_TEST_CASE_P(
SignednessOverrideAndDeltaMaxBitWidthAndNumberOfValuesInSequence,
DeltaEncodingCompressionQualityTest,
::testing::Combine(
::testing::Values(DeltaSignedness::kNoOverride,
DeltaSignedness::kForceUnsigned,
DeltaSignedness::kForceSigned),
::testing::Values(1, 4, 8, 15, 16, 17, 31, 32, 33, 63, 64),
::testing::Values(1, 2, 100, 10000),
::testing::Values(11, 12, 13)));
// Similar to DeltaEncodingTest, but instead of semi-surgically producing
// specific cases, produce large amount of semi-realistic inputs.
class DeltaEncodingFuzzerLikeTest
: public ::testing::TestWithParam<
std::tuple<DeltaSignedness, uint64_t, uint64_t, bool, uint64_t>> {
public:
DeltaEncodingFuzzerLikeTest()
: signedness_(std::get<0>(GetParam())),
delta_max_bit_width_(std::get<1>(GetParam())),
num_of_values_(std::get<2>(GetParam())),
optional_values_(std::get<3>(GetParam())),
partial_random_seed_(std::get<4>(GetParam())) {
MaybeSetSignedness(signedness_);
}
~DeltaEncodingFuzzerLikeTest() override = default;
// Running with the same seed for all variants would make all tests start
// with the same sequence; avoid this by making the seed different.
uint64_t Seed() const {
// Multiply everything but by different primes to produce unique results.
return 2 * static_cast<uint64_t>(signedness_) + 3 * delta_max_bit_width_ +
5 * delta_max_bit_width_ + 7 * num_of_values_ +
11 * static_cast<uint64_t>(optional_values_) +
13 * partial_random_seed_;
}
const DeltaSignedness signedness_;
const uint64_t delta_max_bit_width_;
const uint64_t num_of_values_;
const bool optional_values_;
const uint64_t partial_random_seed_; // Explained where it's used.
};
TEST_P(DeltaEncodingFuzzerLikeTest, Test) {
const absl::optional<uint64_t> base(3432);
Random prng(Seed());
std::vector<absl::optional<uint64_t>> deltas(num_of_values_);
for (size_t i = 0; i < deltas.size(); ++i) {
if (!optional_values_ || prng.Rand<bool>()) {
deltas[i] = RandomWithMaxBitWidth(&prng, delta_max_bit_width_);
}
}
const auto values =
CreateSequenceByOptionalDeltas(base.value(), deltas, num_of_values_);
TestEncodingAndDecoding(base, values);
}
INSTANTIATE_TEST_CASE_P(
SignednessOverrideAndDeltaMaxBitWidthAndNumberOfValuesInSequence,
DeltaEncodingFuzzerLikeTest,
::testing::Combine(
::testing::Values(DeltaSignedness::kNoOverride,
DeltaSignedness::kForceUnsigned,
DeltaSignedness::kForceSigned),
::testing::Values(1, 4, 8, 15, 16, 17, 31, 32, 33, 63, 64),
::testing::Values(1, 2, 100, 10000),
::testing::Bool(),
::testing::Values(21, 22, 23)));
class DeltaEncodingSpecificEdgeCasesTest
: public ::testing::TestWithParam<
std::tuple<DeltaSignedness, uint64_t, bool>> {
public:
DeltaEncodingSpecificEdgeCasesTest() {
UnsetFixedLengthEncoderDeltaSignednessForTesting();
}
~DeltaEncodingSpecificEdgeCasesTest() override = default;
};
// This case is special because it produces identical forward/backward deltas.
TEST_F(DeltaEncodingSpecificEdgeCasesTest, SignedDeltaWithOnlyTopBitOn) {
MaybeSetSignedness(DeltaSignedness::kForceSigned);
const absl::optional<uint64_t> base(3432);
const uint64_t delta = static_cast<uint64_t>(1) << 63;
const std::vector<absl::optional<uint64_t>> values = {base.value() + delta};
TestEncodingAndDecoding(base, values);
}
TEST_F(DeltaEncodingSpecificEdgeCasesTest, MaximumUnsignedDelta) {
MaybeSetSignedness(DeltaSignedness::kForceUnsigned);
const absl::optional<uint64_t> base((static_cast<uint64_t>(1) << 63) + 0x123);
const std::vector<absl::optional<uint64_t>> values = {base.value() - 1};
TestEncodingAndDecoding(base, values);
}
// Check that, if all deltas are set to -1, things still work.
TEST_P(DeltaEncodingSpecificEdgeCasesTest, ReverseSequence) {
MaybeSetSignedness(std::get<0>(GetParam()));
const uint64_t width = std::get<1>(GetParam());
const bool wrap_around = std::get<2>(GetParam());
const uint64_t value_mask = (width == 64)
? std::numeric_limits<uint64_t>::max()
: ((static_cast<uint64_t>(1) << width) - 1);
const uint64_t base = wrap_around ? 1u : (0xf82d3 & value_mask);
const std::vector<absl::optional<uint64_t>> values = {
(base - 1u) & value_mask, (base - 2u) & value_mask,
(base - 3u) & value_mask};
TestEncodingAndDecoding(base, values);
}
INSTANTIATE_TEST_CASE_P(
_,
DeltaEncodingSpecificEdgeCasesTest,
::testing::Combine(
::testing::Values(DeltaSignedness::kNoOverride,
DeltaSignedness::kForceUnsigned,
DeltaSignedness::kForceSigned),
::testing::Values(1, 4, 8, 15, 16, 17, 31, 32, 33, 63, 64),
::testing::Bool()));
} // namespace
} // namespace webrtc