| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/rnn_vad/lp_residual.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <numeric> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace rnn_vad { |
| namespace { |
| |
| // Computes cross-correlation coefficients between |x| and |y| and writes them |
| // in |x_corr|. The lag values are in {0, ..., max_lag - 1}, where max_lag |
| // equals the size of |x_corr|. |
| // The |x| and |y| sub-arrays used to compute a cross-correlation coefficients |
| // for a lag l have both size "size of |x| - l" - i.e., the longest sub-array is |
| // used. |x| and |y| must have the same size. |
| void ComputeCrossCorrelation( |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<const float> y, |
| rtc::ArrayView<float, kNumLpcCoefficients> x_corr) { |
| constexpr size_t max_lag = x_corr.size(); |
| RTC_DCHECK_EQ(x.size(), y.size()); |
| RTC_DCHECK_LT(max_lag, x.size()); |
| for (size_t lag = 0; lag < max_lag; ++lag) { |
| x_corr[lag] = |
| std::inner_product(x.begin(), x.end() - lag, y.begin() + lag, 0.f); |
| } |
| } |
| |
| // Applies denoising to the auto-correlation coefficients. |
| void DenoiseAutoCorrelation( |
| rtc::ArrayView<float, kNumLpcCoefficients> auto_corr) { |
| // Assume -40 dB white noise floor. |
| auto_corr[0] *= 1.0001f; |
| for (size_t i = 1; i < kNumLpcCoefficients; ++i) { |
| auto_corr[i] -= auto_corr[i] * (0.008f * i) * (0.008f * i); |
| } |
| } |
| |
| // Computes the initial inverse filter coefficients given the auto-correlation |
| // coefficients of an input frame. |
| void ComputeInitialInverseFilterCoefficients( |
| rtc::ArrayView<const float, kNumLpcCoefficients> auto_corr, |
| rtc::ArrayView<float, kNumLpcCoefficients - 1> lpc_coeffs) { |
| float error = auto_corr[0]; |
| for (size_t i = 0; i < kNumLpcCoefficients - 1; ++i) { |
| float reflection_coeff = 0.f; |
| for (size_t j = 0; j < i; ++j) { |
| reflection_coeff += lpc_coeffs[j] * auto_corr[i - j]; |
| } |
| reflection_coeff += auto_corr[i + 1]; |
| |
| // Avoid division by numbers close to zero. |
| constexpr float kMinErrorMagnitude = 1e-6f; |
| if (std::fabs(error) < kMinErrorMagnitude) { |
| error = std::copysign(kMinErrorMagnitude, error); |
| } |
| |
| reflection_coeff /= -error; |
| // Update LPC coefficients and total error. |
| lpc_coeffs[i] = reflection_coeff; |
| for (size_t j = 0; j<(i + 1)>> 1; ++j) { |
| const float tmp1 = lpc_coeffs[j]; |
| const float tmp2 = lpc_coeffs[i - 1 - j]; |
| lpc_coeffs[j] = tmp1 + reflection_coeff * tmp2; |
| lpc_coeffs[i - 1 - j] = tmp2 + reflection_coeff * tmp1; |
| } |
| error -= reflection_coeff * reflection_coeff * error; |
| if (error < 0.001f * auto_corr[0]) { |
| break; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| void ComputeAndPostProcessLpcCoefficients( |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float, kNumLpcCoefficients> lpc_coeffs) { |
| std::array<float, kNumLpcCoefficients> auto_corr; |
| ComputeCrossCorrelation(x, x, {auto_corr.data(), auto_corr.size()}); |
| if (auto_corr[0] == 0.f) { // Empty frame. |
| std::fill(lpc_coeffs.begin(), lpc_coeffs.end(), 0); |
| return; |
| } |
| DenoiseAutoCorrelation({auto_corr.data(), auto_corr.size()}); |
| std::array<float, kNumLpcCoefficients - 1> lpc_coeffs_pre{}; |
| ComputeInitialInverseFilterCoefficients(auto_corr, lpc_coeffs_pre); |
| // LPC coefficients post-processing. |
| // TODO(bugs.webrtc.org/9076): Consider removing these steps. |
| float c1 = 1.f; |
| for (size_t i = 0; i < kNumLpcCoefficients - 1; ++i) { |
| c1 *= 0.9f; |
| lpc_coeffs_pre[i] *= c1; |
| } |
| const float c2 = 0.8f; |
| lpc_coeffs[0] = lpc_coeffs_pre[0] + c2; |
| lpc_coeffs[1] = lpc_coeffs_pre[1] + c2 * lpc_coeffs_pre[0]; |
| lpc_coeffs[2] = lpc_coeffs_pre[2] + c2 * lpc_coeffs_pre[1]; |
| lpc_coeffs[3] = lpc_coeffs_pre[3] + c2 * lpc_coeffs_pre[2]; |
| lpc_coeffs[4] = c2 * lpc_coeffs_pre[3]; |
| } |
| |
| void ComputeLpResidual( |
| rtc::ArrayView<const float, kNumLpcCoefficients> lpc_coeffs, |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float> y) { |
| RTC_DCHECK_LT(kNumLpcCoefficients, x.size()); |
| RTC_DCHECK_EQ(x.size(), y.size()); |
| std::array<float, kNumLpcCoefficients> input_chunk; |
| input_chunk.fill(0.f); |
| for (size_t i = 0; i < y.size(); ++i) { |
| const float sum = std::inner_product(input_chunk.begin(), input_chunk.end(), |
| lpc_coeffs.begin(), x[i]); |
| // Circular shift and add a new sample. |
| for (size_t j = kNumLpcCoefficients - 1; j > 0; --j) |
| input_chunk[j] = input_chunk[j - 1]; |
| input_chunk[0] = x[i]; |
| // Copy result. |
| y[i] = sum; |
| } |
| } |
| |
| } // namespace rnn_vad |
| } // namespace webrtc |