blob: 6ebf66dd50efebc8af6313e8daa96c5b4b436e20 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include "media/base/streamparams.h"
#include "media/engine/constants.h"
#include "media/engine/simulcast.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace cricket {
struct SimulcastFormat {
int width;
int height;
// The maximum number of simulcast layers can be used for
// resolutions at |widthxheigh|.
size_t max_layers;
// The maximum bitrate for encoding stream at |widthxheight|, when we are
// not sending the next higher spatial stream.
int max_bitrate_kbps;
// The target bitrate for encoding stream at |widthxheight|, when this layer
// is not the highest layer (i.e., when we are sending another higher spatial
// stream).
int target_bitrate_kbps;
// The minimum bitrate needed for encoding stream at |widthxheight|.
int min_bitrate_kbps;
};
// These tables describe from which resolution we can use how many
// simulcast layers at what bitrates (maximum, target, and minimum).
// Important!! Keep this table from high resolution to low resolution.
const SimulcastFormat kSimulcastFormats[] = {
{1920, 1080, 3, 5000, 4000, 800},
{1280, 720, 3, 2500, 2500, 600},
{960, 540, 3, 900, 900, 450},
{640, 360, 2, 700, 500, 150},
{480, 270, 2, 450, 350, 150},
{320, 180, 1, 200, 150, 30},
{0, 0, 1, 200, 150, 30}
};
const int kMaxScreenshareSimulcastStreams = 2;
// Multiway: Number of temporal layers for each simulcast stream, for maximum
// possible number of simulcast streams |kMaxSimulcastStreams|. The array
// goes from lowest resolution at position 0 to highest resolution.
// For example, first three elements correspond to say: QVGA, VGA, WHD.
static const int
kDefaultConferenceNumberOfTemporalLayers[webrtc::kMaxSimulcastStreams] =
{3, 3, 3, 3};
void GetSimulcastSsrcs(const StreamParams& sp, std::vector<uint32_t>* ssrcs) {
const SsrcGroup* sim_group = sp.get_ssrc_group(kSimSsrcGroupSemantics);
if (sim_group) {
ssrcs->insert(
ssrcs->end(), sim_group->ssrcs.begin(), sim_group->ssrcs.end());
}
}
void MaybeExchangeWidthHeight(int* width, int* height) {
// |kSimulcastFormats| assumes |width| >= |height|. If not, exchange them
// before comparing.
if (*width < *height) {
int temp = *width;
*width = *height;
*height = temp;
}
}
int FindSimulcastFormatIndex(int width, int height) {
MaybeExchangeWidthHeight(&width, &height);
for (uint32_t i = 0; i < arraysize(kSimulcastFormats); ++i) {
if (width * height >=
kSimulcastFormats[i].width * kSimulcastFormats[i].height) {
return i;
}
}
return -1;
}
int FindSimulcastFormatIndex(int width, int height, size_t max_layers) {
MaybeExchangeWidthHeight(&width, &height);
for (uint32_t i = 0; i < arraysize(kSimulcastFormats); ++i) {
if (width * height >=
kSimulcastFormats[i].width * kSimulcastFormats[i].height &&
max_layers == kSimulcastFormats[i].max_layers) {
return i;
}
}
return -1;
}
// Simulcast stream width and height must both be dividable by
// |2 ^ simulcast_layers - 1|.
int NormalizeSimulcastSize(int size, size_t simulcast_layers) {
const int base2_exponent = static_cast<int>(simulcast_layers) - 1;
return ((size >> base2_exponent) << base2_exponent);
}
size_t FindSimulcastMaxLayers(int width, int height) {
int index = FindSimulcastFormatIndex(width, height);
if (index == -1) {
return -1;
}
return kSimulcastFormats[index].max_layers;
}
// TODO(marpan): Investigate if we should return 0 instead of -1 in
// FindSimulcast[Max/Target/Min]Bitrate functions below, since the
// codec struct max/min/targeBitrates are unsigned.
int FindSimulcastMaxBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
if (format_index == -1) {
return -1;
}
return kSimulcastFormats[format_index].max_bitrate_kbps * 1000;
}
int FindSimulcastTargetBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
if (format_index == -1) {
return -1;
}
return kSimulcastFormats[format_index].target_bitrate_kbps * 1000;
}
int FindSimulcastMinBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
if (format_index == -1) {
return -1;
}
return kSimulcastFormats[format_index].min_bitrate_kbps * 1000;
}
bool SlotSimulcastMaxResolution(size_t max_layers, int* width, int* height) {
int index = FindSimulcastFormatIndex(*width, *height, max_layers);
if (index == -1) {
LOG(LS_ERROR) << "SlotSimulcastMaxResolution";
return false;
}
*width = kSimulcastFormats[index].width;
*height = kSimulcastFormats[index].height;
LOG(LS_INFO) << "SlotSimulcastMaxResolution to width:" << *width
<< " height:" << *height;
return true;
}
int GetTotalMaxBitrateBps(const std::vector<webrtc::VideoStream>& streams) {
int total_max_bitrate_bps = 0;
for (size_t s = 0; s < streams.size() - 1; ++s) {
total_max_bitrate_bps += streams[s].target_bitrate_bps;
}
total_max_bitrate_bps += streams.back().max_bitrate_bps;
return total_max_bitrate_bps;
}
std::vector<webrtc::VideoStream> GetSimulcastConfig(size_t max_streams,
int width,
int height,
int max_bitrate_bps,
int max_qp,
int max_framerate,
bool is_screencast) {
size_t num_simulcast_layers;
if (is_screencast) {
if (UseSimulcastScreenshare()) {
num_simulcast_layers =
std::min<int>(max_streams, kMaxScreenshareSimulcastStreams);
} else {
num_simulcast_layers = 1;
}
} else {
num_simulcast_layers = FindSimulcastMaxLayers(width, height);
}
if (num_simulcast_layers > max_streams) {
// If the number of SSRCs in the group differs from our target
// number of simulcast streams for current resolution, switch down
// to a resolution that matches our number of SSRCs.
if (!SlotSimulcastMaxResolution(max_streams, &width, &height)) {
return std::vector<webrtc::VideoStream>();
}
num_simulcast_layers = max_streams;
}
std::vector<webrtc::VideoStream> streams;
streams.resize(num_simulcast_layers);
if (is_screencast) {
ScreenshareLayerConfig config = ScreenshareLayerConfig::GetDefault();
// For legacy screenshare in conference mode, tl0 and tl1 bitrates are
// piggybacked on the VideoCodec struct as target and max bitrates,
// respectively. See eg. webrtc::VP8EncoderImpl::SetRates().
streams[0].width = width;
streams[0].height = height;
streams[0].max_qp = max_qp;
streams[0].max_framerate = 5;
streams[0].min_bitrate_bps = kMinVideoBitrateKbps * 1000;
streams[0].target_bitrate_bps = config.tl0_bitrate_kbps * 1000;
streams[0].max_bitrate_bps = config.tl1_bitrate_kbps * 1000;
streams[0].temporal_layer_thresholds_bps.clear();
streams[0].temporal_layer_thresholds_bps.push_back(config.tl0_bitrate_kbps *
1000);
// With simulcast enabled, add another spatial layer. This one will have a
// more normal layout, with the regular 3 temporal layer pattern and no fps
// restrictions. The base simulcast stream will still use legacy setup.
if (num_simulcast_layers == kMaxScreenshareSimulcastStreams) {
// Add optional upper simulcast layer.
// Lowest temporal layers of a 3 layer setup will have 40% of the total
// bitrate allocation for that stream. Make sure the gap between the
// target of the lower stream and first temporal layer of the higher one
// is at most 2x the bitrate, so that upswitching is not hampered by
// stalled bitrate estimates.
int max_bitrate_bps = 2 * ((streams[0].target_bitrate_bps * 10) / 4);
// Cap max bitrate so it isn't overly high for the given resolution.
max_bitrate_bps = std::min<int>(
max_bitrate_bps, FindSimulcastMaxBitrateBps(width, height));
streams[1].width = width;
streams[1].height = height;
streams[1].max_qp = max_qp;
streams[1].max_framerate = max_framerate;
// Three temporal layers means two thresholds.
streams[1].temporal_layer_thresholds_bps.resize(2);
streams[1].min_bitrate_bps = streams[0].target_bitrate_bps * 2;
streams[1].target_bitrate_bps = max_bitrate_bps;
streams[1].max_bitrate_bps = max_bitrate_bps;
}
} else {
// Format width and height has to be divisible by |2 ^ number_streams - 1|.
width = NormalizeSimulcastSize(width, num_simulcast_layers);
height = NormalizeSimulcastSize(height, num_simulcast_layers);
// Add simulcast sub-streams from lower resolution to higher resolutions.
// Add simulcast streams, from highest resolution (|s| = number_streams -1)
// to lowest resolution at |s| = 0.
for (size_t s = num_simulcast_layers - 1;; --s) {
streams[s].width = width;
streams[s].height = height;
// TODO(pbos): Fill actual temporal-layer bitrate thresholds.
streams[s].max_qp = max_qp;
streams[s].temporal_layer_thresholds_bps.resize(
kDefaultConferenceNumberOfTemporalLayers[s] - 1);
streams[s].max_bitrate_bps = FindSimulcastMaxBitrateBps(width, height);
streams[s].target_bitrate_bps =
FindSimulcastTargetBitrateBps(width, height);
streams[s].min_bitrate_bps = FindSimulcastMinBitrateBps(width, height);
streams[s].max_framerate = max_framerate;
width /= 2;
height /= 2;
if (s == 0)
break;
}
// Spend additional bits to boost the max stream.
int bitrate_left_bps = max_bitrate_bps - GetTotalMaxBitrateBps(streams);
if (bitrate_left_bps > 0) {
streams.back().max_bitrate_bps += bitrate_left_bps;
}
}
return streams;
}
static const int kScreenshareMinBitrateKbps = 50;
static const int kScreenshareMaxBitrateKbps = 6000;
static const int kScreenshareDefaultTl0BitrateKbps = 200;
static const int kScreenshareDefaultTl1BitrateKbps = 1000;
static const char* kScreencastLayerFieldTrialName =
"WebRTC-ScreenshareLayerRates";
static const char* kSimulcastScreenshareFieldTrialName =
"WebRTC-SimulcastScreenshare";
ScreenshareLayerConfig::ScreenshareLayerConfig(int tl0_bitrate, int tl1_bitrate)
: tl0_bitrate_kbps(tl0_bitrate), tl1_bitrate_kbps(tl1_bitrate) {
}
ScreenshareLayerConfig ScreenshareLayerConfig::GetDefault() {
std::string group =
webrtc::field_trial::FindFullName(kScreencastLayerFieldTrialName);
ScreenshareLayerConfig config(kScreenshareDefaultTl0BitrateKbps,
kScreenshareDefaultTl1BitrateKbps);
if (!group.empty() && !FromFieldTrialGroup(group, &config)) {
LOG(LS_WARNING) << "Unable to parse WebRTC-ScreenshareLayerRates"
" field trial group: '" << group << "'.";
}
return config;
}
bool ScreenshareLayerConfig::FromFieldTrialGroup(
const std::string& group,
ScreenshareLayerConfig* config) {
// Parse field trial group name, containing bitrates for tl0 and tl1.
int tl0_bitrate;
int tl1_bitrate;
if (sscanf(group.c_str(), "%d-%d", &tl0_bitrate, &tl1_bitrate) != 2) {
return false;
}
// Sanity check.
if (tl0_bitrate < kScreenshareMinBitrateKbps ||
tl0_bitrate > kScreenshareMaxBitrateKbps ||
tl1_bitrate < kScreenshareMinBitrateKbps ||
tl1_bitrate > kScreenshareMaxBitrateKbps || tl0_bitrate > tl1_bitrate) {
return false;
}
config->tl0_bitrate_kbps = tl0_bitrate;
config->tl1_bitrate_kbps = tl1_bitrate;
return true;
}
bool UseSimulcastScreenshare() {
return webrtc::field_trial::IsEnabled(kSimulcastScreenshareFieldTrialName);
}
} // namespace cricket