|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <stdint.h> | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | #include <sys/time.h> | 
|  | #if defined(WEBRTC_MAC) | 
|  | #include <mach/mach_time.h> | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | #ifndef WIN32_LEAN_AND_MEAN | 
|  | #define WIN32_LEAN_AND_MEAN | 
|  | #endif | 
|  | #include <windows.h> | 
|  | #include <mmsystem.h> | 
|  | #include <sys/timeb.h> | 
|  | #endif | 
|  |  | 
|  | #include "webrtc/base/checks.h" | 
|  | #include "webrtc/base/timeutils.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | ClockInterface* g_clock = nullptr; | 
|  |  | 
|  | ClockInterface* SetClockForTesting(ClockInterface* clock) { | 
|  | ClockInterface* prev = g_clock; | 
|  | g_clock = clock; | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | uint64_t SystemTimeNanos() { | 
|  | int64_t ticks; | 
|  | #if defined(WEBRTC_MAC) | 
|  | static mach_timebase_info_data_t timebase; | 
|  | if (timebase.denom == 0) { | 
|  | // Get the timebase if this is the first time we run. | 
|  | // Recommended by Apple's QA1398. | 
|  | if (mach_timebase_info(&timebase) != KERN_SUCCESS) { | 
|  | RTC_DCHECK(false); | 
|  | } | 
|  | } | 
|  | // Use timebase to convert absolute time tick units into nanoseconds. | 
|  | ticks = mach_absolute_time() * timebase.numer / timebase.denom; | 
|  | #elif defined(WEBRTC_POSIX) | 
|  | struct timespec ts; | 
|  | // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not | 
|  | // supported? | 
|  | clock_gettime(CLOCK_MONOTONIC, &ts); | 
|  | ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) + | 
|  | static_cast<int64_t>(ts.tv_nsec); | 
|  | #elif defined(WEBRTC_WIN) | 
|  | static volatile LONG last_timegettime = 0; | 
|  | static volatile int64_t num_wrap_timegettime = 0; | 
|  | volatile LONG* last_timegettime_ptr = &last_timegettime; | 
|  | DWORD now = timeGetTime(); | 
|  | // Atomically update the last gotten time | 
|  | DWORD old = InterlockedExchange(last_timegettime_ptr, now); | 
|  | if (now < old) { | 
|  | // If now is earlier than old, there may have been a race between threads. | 
|  | // 0x0fffffff ~3.1 days, the code will not take that long to execute | 
|  | // so it must have been a wrap around. | 
|  | if (old > 0xf0000000 && now < 0x0fffffff) { | 
|  | num_wrap_timegettime++; | 
|  | } | 
|  | } | 
|  | ticks = now + (num_wrap_timegettime << 32); | 
|  | // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're | 
|  | // just wasting a multiply and divide when doing Time() on Windows. | 
|  | ticks = ticks * kNumNanosecsPerMillisec; | 
|  | #else | 
|  | #error Unsupported platform. | 
|  | #endif | 
|  | return ticks; | 
|  | } | 
|  |  | 
|  | int64_t SystemTimeMillis() { | 
|  | return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec); | 
|  | } | 
|  |  | 
|  | uint64_t TimeNanos() { | 
|  | if (g_clock) { | 
|  | return g_clock->TimeNanos(); | 
|  | } | 
|  | return SystemTimeNanos(); | 
|  | } | 
|  |  | 
|  | uint32_t Time32() { | 
|  | return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec); | 
|  | } | 
|  |  | 
|  | int64_t TimeMillis() { | 
|  | return static_cast<int64_t>(TimeNanos() / kNumNanosecsPerMillisec); | 
|  | } | 
|  |  | 
|  | uint64_t TimeMicros() { | 
|  | return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec); | 
|  | } | 
|  |  | 
|  | int64_t TimeAfter(int64_t elapsed) { | 
|  | RTC_DCHECK_GE(elapsed, 0); | 
|  | return TimeMillis() + elapsed; | 
|  | } | 
|  |  | 
|  | int32_t TimeDiff32(uint32_t later, uint32_t earlier) { | 
|  | return later - earlier; | 
|  | } | 
|  |  | 
|  | int64_t TimeDiff(int64_t later, int64_t earlier) { | 
|  | return later - earlier; | 
|  | } | 
|  |  | 
|  | TimestampWrapAroundHandler::TimestampWrapAroundHandler() | 
|  | : last_ts_(0), num_wrap_(-1) {} | 
|  |  | 
|  | int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) { | 
|  | if (num_wrap_ == -1) { | 
|  | last_ts_ = ts; | 
|  | num_wrap_ = 0; | 
|  | return ts; | 
|  | } | 
|  |  | 
|  | if (ts < last_ts_) { | 
|  | if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff) | 
|  | ++num_wrap_; | 
|  | } else if ((ts - last_ts_) > 0xf0000000) { | 
|  | // Backwards wrap. Unwrap with last wrap count and don't update last_ts_. | 
|  | return ts + ((num_wrap_ - 1) << 32); | 
|  | } | 
|  |  | 
|  | last_ts_ = ts; | 
|  | return ts + (num_wrap_ << 32); | 
|  | } | 
|  |  | 
|  | int64_t TmToSeconds(const std::tm& tm) { | 
|  | static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | 
|  | static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151, | 
|  | 181, 212, 243, 273, 304, 334}; | 
|  | int year = tm.tm_year + 1900; | 
|  | int month = tm.tm_mon; | 
|  | int day = tm.tm_mday - 1;  // Make 0-based like the rest. | 
|  | int hour = tm.tm_hour; | 
|  | int min = tm.tm_min; | 
|  | int sec = tm.tm_sec; | 
|  |  | 
|  | bool expiry_in_leap_year = (year % 4 == 0 && | 
|  | (year % 100 != 0 || year % 400 == 0)); | 
|  |  | 
|  | if (year < 1970) | 
|  | return -1; | 
|  | if (month < 0 || month > 11) | 
|  | return -1; | 
|  | if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1)) | 
|  | return -1; | 
|  | if (hour < 0 || hour > 23) | 
|  | return -1; | 
|  | if (min < 0 || min > 59) | 
|  | return -1; | 
|  | if (sec < 0 || sec > 59) | 
|  | return -1; | 
|  |  | 
|  | day += cumul_mdays[month]; | 
|  |  | 
|  | // Add number of leap days between 1970 and the expiration year, inclusive. | 
|  | day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) + | 
|  | (year / 400 - 1970 / 400)); | 
|  |  | 
|  | // We will have added one day too much above if expiration is during a leap | 
|  | // year, and expiration is in January or February. | 
|  | if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based. | 
|  | day -= 1; | 
|  |  | 
|  | // Combine all variables into seconds from 1970-01-01 00:00 (except |month| | 
|  | // which was accumulated into |day| above). | 
|  | return (((static_cast<int64_t> | 
|  | (year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec; | 
|  | } | 
|  |  | 
|  | int64_t TimeUTCMicros() { | 
|  | #if defined(WEBRTC_POSIX) | 
|  | struct timeval time; | 
|  | gettimeofday(&time, NULL); | 
|  | // Convert from second (1.0) and microsecond (1e-6). | 
|  | return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec + | 
|  | time.tv_usec); | 
|  |  | 
|  | #elif defined(WEBRTC_WIN) | 
|  | struct _timeb time; | 
|  | _ftime(&time); | 
|  | // Convert from second (1.0) and milliseconds (1e-3). | 
|  | return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec + | 
|  | static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | } // namespace rtc |