blob: 64df2b869f332c05587233fa08bbbb31d8fb13fc [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/pc/e2e/analyzer/video/quality_analyzing_video_encoder.h"
#include <cmath>
#include <memory>
#include <utility>
#include "absl/strings/string_view.h"
#include "api/video/video_codec_type.h"
#include "api/video_codecs/video_encoder.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace webrtc_pc_e2e {
namespace {
constexpr size_t kMaxFrameInPipelineCount = 1000;
constexpr double kNoMultiplier = 1.0;
constexpr double kEps = 1e-6;
std::pair<uint32_t, uint32_t> GetMinMaxBitratesBps(const VideoCodec& codec,
size_t spatial_idx) {
uint32_t min_bitrate = codec.minBitrate;
uint32_t max_bitrate = codec.maxBitrate;
if (spatial_idx < codec.numberOfSimulcastStreams &&
codec.codecType != VideoCodecType::kVideoCodecVP9) {
min_bitrate =
std::max(min_bitrate, codec.simulcastStream[spatial_idx].minBitrate);
max_bitrate =
std::min(max_bitrate, codec.simulcastStream[spatial_idx].maxBitrate);
}
if (codec.codecType == VideoCodecType::kVideoCodecVP9 &&
spatial_idx < codec.VP9().numberOfSpatialLayers) {
min_bitrate =
std::max(min_bitrate, codec.spatialLayers[spatial_idx].minBitrate);
max_bitrate =
std::min(max_bitrate, codec.spatialLayers[spatial_idx].maxBitrate);
}
RTC_DCHECK_GT(max_bitrate, min_bitrate);
return {min_bitrate * 1000, max_bitrate * 1000};
}
} // namespace
QualityAnalyzingVideoEncoder::QualityAnalyzingVideoEncoder(
absl::string_view peer_name,
std::unique_ptr<VideoEncoder> delegate,
double bitrate_multiplier,
std::map<std::string, absl::optional<int>> stream_required_spatial_index,
EncodedImageDataInjector* injector,
VideoQualityAnalyzerInterface* analyzer)
: peer_name_(peer_name),
delegate_(std::move(delegate)),
bitrate_multiplier_(bitrate_multiplier),
stream_required_spatial_index_(std::move(stream_required_spatial_index)),
injector_(injector),
analyzer_(analyzer),
mode_(SimulcastMode::kNormal),
delegate_callback_(nullptr) {}
QualityAnalyzingVideoEncoder::~QualityAnalyzingVideoEncoder() = default;
void QualityAnalyzingVideoEncoder::SetFecControllerOverride(
FecControllerOverride* fec_controller_override) {
// Ignored.
}
int32_t QualityAnalyzingVideoEncoder::InitEncode(
const VideoCodec* codec_settings,
const Settings& settings) {
MutexLock lock(&mutex_);
codec_settings_ = *codec_settings;
mode_ = SimulcastMode::kNormal;
if (codec_settings->codecType == kVideoCodecVP9) {
if (codec_settings->VP9().numberOfSpatialLayers > 1) {
switch (codec_settings->VP9().interLayerPred) {
case InterLayerPredMode::kOn:
mode_ = SimulcastMode::kSVC;
break;
case InterLayerPredMode::kOnKeyPic:
mode_ = SimulcastMode::kKSVC;
break;
case InterLayerPredMode::kOff:
mode_ = SimulcastMode::kSimulcast;
break;
default:
RTC_DCHECK_NOTREACHED()
<< "Unknown codec_settings->VP9().interLayerPred";
break;
}
}
}
if (codec_settings->numberOfSimulcastStreams > 1) {
mode_ = SimulcastMode::kSimulcast;
}
return delegate_->InitEncode(codec_settings, settings);
}
int32_t QualityAnalyzingVideoEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
// We need to get a lock here because delegate_callback can be hypothetically
// accessed from different thread (encoder one) concurrently.
MutexLock lock(&mutex_);
delegate_callback_ = callback;
return delegate_->RegisterEncodeCompleteCallback(this);
}
int32_t QualityAnalyzingVideoEncoder::Release() {
// Release encoder first. During release process it can still encode some
// frames, so we don't take a lock to prevent deadlock.
int32_t result = delegate_->Release();
MutexLock lock(&mutex_);
delegate_callback_ = nullptr;
return result;
}
int32_t QualityAnalyzingVideoEncoder::Encode(
const VideoFrame& frame,
const std::vector<VideoFrameType>* frame_types) {
{
MutexLock lock(&mutex_);
// Store id to be able to retrieve it in analyzing callback.
timestamp_to_frame_id_list_.push_back({frame.timestamp(), frame.id()});
// If this list is growing, it means that we are not receiving new encoded
// images from encoder. So it should be a bug in setup on in the encoder.
RTC_DCHECK_LT(timestamp_to_frame_id_list_.size(), kMaxFrameInPipelineCount);
}
analyzer_->OnFramePreEncode(peer_name_, frame);
int32_t result = delegate_->Encode(frame, frame_types);
if (result != WEBRTC_VIDEO_CODEC_OK) {
// If origin encoder failed, then cleanup data for this frame.
{
MutexLock lock(&mutex_);
// The timestamp-frame_id pair can be not the last one, so we need to
// find it first and then remove. We will search from the end, because
// usually it will be the last or close to the last one.
auto it = timestamp_to_frame_id_list_.end();
while (it != timestamp_to_frame_id_list_.begin()) {
--it;
if (it->first == frame.timestamp()) {
timestamp_to_frame_id_list_.erase(it);
break;
}
}
}
analyzer_->OnEncoderError(peer_name_, frame, result);
}
return result;
}
void QualityAnalyzingVideoEncoder::SetRates(
const VideoEncoder::RateControlParameters& parameters) {
RTC_DCHECK_GT(bitrate_multiplier_, 0.0);
if (fabs(bitrate_multiplier_ - kNoMultiplier) < kEps) {
{
MutexLock lock(&mutex_);
bitrate_allocation_ = parameters.bitrate;
}
return delegate_->SetRates(parameters);
}
RateControlParameters adjusted_params = parameters;
{
MutexLock lock(&mutex_);
// Simulating encoder overshooting target bitrate, by configuring actual
// encoder too high. Take care not to adjust past limits of config,
// otherwise encoders may crash on DCHECK.
VideoBitrateAllocation multiplied_allocation;
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
const uint32_t spatial_layer_bitrate_bps =
parameters.bitrate.GetSpatialLayerSum(si);
if (spatial_layer_bitrate_bps == 0) {
continue;
}
uint32_t min_bitrate_bps;
uint32_t max_bitrate_bps;
std::tie(min_bitrate_bps, max_bitrate_bps) =
GetMinMaxBitratesBps(codec_settings_, si);
double bitrate_multiplier = bitrate_multiplier_;
const uint32_t corrected_bitrate = rtc::checked_cast<uint32_t>(
bitrate_multiplier * spatial_layer_bitrate_bps);
if (corrected_bitrate < min_bitrate_bps) {
bitrate_multiplier = min_bitrate_bps / spatial_layer_bitrate_bps;
} else if (corrected_bitrate > max_bitrate_bps) {
bitrate_multiplier = max_bitrate_bps / spatial_layer_bitrate_bps;
}
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (parameters.bitrate.HasBitrate(si, ti)) {
multiplied_allocation.SetBitrate(
si, ti,
rtc::checked_cast<uint32_t>(
bitrate_multiplier * parameters.bitrate.GetBitrate(si, ti)));
}
}
}
adjusted_params.bitrate = multiplied_allocation;
bitrate_allocation_ = adjusted_params.bitrate;
}
return delegate_->SetRates(adjusted_params);
}
VideoEncoder::EncoderInfo QualityAnalyzingVideoEncoder::GetEncoderInfo() const {
return delegate_->GetEncoderInfo();
}
// It is assumed, that encoded callback will be always invoked with encoded
// images that correspond to the frames in the same sequence, that frames
// arrived. In other words, assume we have frames F1, F2 and F3 and they have
// corresponding encoded images I1, I2 and I3. In such case if we will call
// encode first with F1, then with F2 and then with F3, then encoder callback
// will be called first with all spatial layers for F1 (I1), then F2 (I2) and
// then F3 (I3).
//
// Basing on it we will use a list of timestamp-frame_id pairs like this:
// 1. If current encoded image timestamp is equals to timestamp in the front
// pair - pick frame id from that pair
// 2. If current encoded image timestamp isn't equals to timestamp in the front
// pair - remove the front pair and got to the step 1.
EncodedImageCallback::Result QualityAnalyzingVideoEncoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) {
uint16_t frame_id;
bool discard = false;
uint32_t target_encode_bitrate = 0;
std::string codec_name;
{
MutexLock lock(&mutex_);
std::pair<uint32_t, uint16_t> timestamp_frame_id;
while (!timestamp_to_frame_id_list_.empty()) {
timestamp_frame_id = timestamp_to_frame_id_list_.front();
if (timestamp_frame_id.first == encoded_image.Timestamp()) {
break;
}
timestamp_to_frame_id_list_.pop_front();
}
// After the loop the first element should point to current `encoded_image`
// frame id. We don't remove it from the list, because there may be
// multiple spatial layers for this frame, so encoder can produce more
// encoded images with this timestamp. The first element will be removed
// when the next frame would be encoded and EncodedImageCallback would be
// called with the next timestamp.
if (timestamp_to_frame_id_list_.empty()) {
// Ensure, that we have info about this frame. It can happen that for some
// reasons encoder response, that he failed to decode, when we were
// posting frame to it, but then call the callback for this frame.
RTC_LOG(LS_ERROR) << "QualityAnalyzingVideoEncoder::OnEncodedImage: No "
"frame id for encoded_image.Timestamp()="
<< encoded_image.Timestamp();
return EncodedImageCallback::Result(
EncodedImageCallback::Result::Error::OK);
}
frame_id = timestamp_frame_id.second;
discard = ShouldDiscard(frame_id, encoded_image);
if (!discard) {
target_encode_bitrate = bitrate_allocation_.GetSpatialLayerSum(
encoded_image.SpatialIndex().value_or(0));
}
codec_name =
std::string(CodecTypeToPayloadString(codec_settings_.codecType)) + "_" +
delegate_->GetEncoderInfo().implementation_name;
}
if (!discard) {
// Analyzer should see only encoded images, that weren't discarded. But all
// not discarded layers have to be passed.
VideoQualityAnalyzerInterface::EncoderStats stats;
stats.encoder_name = codec_name;
stats.target_encode_bitrate = target_encode_bitrate;
analyzer_->OnFrameEncoded(peer_name_, frame_id, encoded_image, stats);
}
// Image data injector injects frame id and discard flag into provided
// EncodedImage and returns the image with a) modified original buffer (in
// such case the current owner of the buffer will be responsible for deleting
// it) or b) a new buffer (in such case injector will be responsible for
// deleting it).
const EncodedImage& image =
injector_->InjectData(frame_id, discard, encoded_image);
{
MutexLock lock(&mutex_);
RTC_DCHECK(delegate_callback_);
return delegate_callback_->OnEncodedImage(image, codec_specific_info);
}
}
void QualityAnalyzingVideoEncoder::OnDroppedFrame(
EncodedImageCallback::DropReason reason) {
MutexLock lock(&mutex_);
analyzer_->OnFrameDropped(peer_name_, reason);
RTC_DCHECK(delegate_callback_);
delegate_callback_->OnDroppedFrame(reason);
}
bool QualityAnalyzingVideoEncoder::ShouldDiscard(
uint16_t frame_id,
const EncodedImage& encoded_image) {
std::string stream_label = analyzer_->GetStreamLabel(frame_id);
absl::optional<int> required_spatial_index =
stream_required_spatial_index_[stream_label];
if (required_spatial_index) {
if (*required_spatial_index == kAnalyzeAnySpatialStream) {
return false;
}
absl::optional<int> cur_spatial_index = encoded_image.SpatialIndex();
if (!cur_spatial_index) {
cur_spatial_index = 0;
}
RTC_CHECK(mode_ != SimulcastMode::kNormal)
<< "Analyzing encoder is in kNormal "
"mode, but spatial layer/simulcast "
"stream met.";
if (mode_ == SimulcastMode::kSimulcast) {
// In simulcast mode only encoded images with required spatial index are
// interested, so all others have to be discarded.
return *cur_spatial_index != *required_spatial_index;
} else if (mode_ == SimulcastMode::kSVC) {
// In SVC mode encoded images with spatial indexes that are equal or
// less than required one are interesting, so all above have to be
// discarded.
return *cur_spatial_index > *required_spatial_index;
} else if (mode_ == SimulcastMode::kKSVC) {
// In KSVC mode for key frame encoded images with spatial indexes that
// are equal or less than required one are interesting, so all above
// have to be discarded. For other frames only required spatial index
// is interesting, so all others have to be discarded.
if (encoded_image._frameType == VideoFrameType::kVideoFrameKey) {
return *cur_spatial_index > *required_spatial_index;
} else {
return *cur_spatial_index != *required_spatial_index;
}
} else {
RTC_DCHECK_NOTREACHED() << "Unsupported encoder mode";
}
}
return false;
}
QualityAnalyzingVideoEncoderFactory::QualityAnalyzingVideoEncoderFactory(
absl::string_view peer_name,
std::unique_ptr<VideoEncoderFactory> delegate,
double bitrate_multiplier,
std::map<std::string, absl::optional<int>> stream_required_spatial_index,
EncodedImageDataInjector* injector,
VideoQualityAnalyzerInterface* analyzer)
: peer_name_(peer_name),
delegate_(std::move(delegate)),
bitrate_multiplier_(bitrate_multiplier),
stream_required_spatial_index_(std::move(stream_required_spatial_index)),
injector_(injector),
analyzer_(analyzer) {}
QualityAnalyzingVideoEncoderFactory::~QualityAnalyzingVideoEncoderFactory() =
default;
std::vector<SdpVideoFormat>
QualityAnalyzingVideoEncoderFactory::GetSupportedFormats() const {
return delegate_->GetSupportedFormats();
}
VideoEncoderFactory::CodecInfo
QualityAnalyzingVideoEncoderFactory::QueryVideoEncoder(
const SdpVideoFormat& format) const {
return delegate_->QueryVideoEncoder(format);
}
std::unique_ptr<VideoEncoder>
QualityAnalyzingVideoEncoderFactory::CreateVideoEncoder(
const SdpVideoFormat& format) {
return std::make_unique<QualityAnalyzingVideoEncoder>(
peer_name_, delegate_->CreateVideoEncoder(format), bitrate_multiplier_,
stream_required_spatial_index_, injector_, analyzer_);
}
} // namespace webrtc_pc_e2e
} // namespace webrtc