blob: 7c88d29cc7b56b7e8e16326863ceb3754ef9a40b [file] [log] [blame]
/*
* Copyright 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#include <string.h>
#include <memory>
#include <string>
#include <vector>
#include "api/data_channel_interface.h"
#include "api/rtc_error.h"
#include "api/scoped_refptr.h"
#include "api/transport/data_channel_transport_interface.h"
#include "media/base/media_channel.h"
#include "media/sctp/sctp_transport_internal.h"
#include "pc/sctp_data_channel.h"
#include "pc/sctp_utils.h"
#include "pc/test/fake_data_channel_controller.h"
#include "rtc_base/copy_on_write_buffer.h"
#include "rtc_base/gunit.h"
#include "rtc_base/null_socket_server.h"
#include "rtc_base/ssl_stream_adapter.h"
#include "rtc_base/thread.h"
#include "test/gtest.h"
#include "test/run_loop.h"
namespace webrtc {
namespace {
static constexpr int kDefaultTimeout = 10000;
class FakeDataChannelObserver : public DataChannelObserver {
public:
FakeDataChannelObserver() { RTC_DCHECK(!IsOkToCallOnTheNetworkThread()); }
void OnStateChange() override { ++on_state_change_count_; }
void OnBufferedAmountChange(uint64_t previous_amount) override {
++on_buffered_amount_change_count_;
}
void OnMessage(const DataBuffer& buffer) override { ++messages_received_; }
size_t messages_received() const { return messages_received_; }
void ResetOnStateChangeCount() { on_state_change_count_ = 0; }
void ResetOnBufferedAmountChangeCount() {
on_buffered_amount_change_count_ = 0;
}
size_t on_state_change_count() const { return on_state_change_count_; }
size_t on_buffered_amount_change_count() const {
return on_buffered_amount_change_count_;
}
private:
size_t messages_received_ = 0u;
size_t on_state_change_count_ = 0u;
size_t on_buffered_amount_change_count_ = 0u;
};
class SctpDataChannelTest : public ::testing::Test {
protected:
SctpDataChannelTest()
: network_thread_(std::make_unique<rtc::NullSocketServer>()),
controller_(new FakeDataChannelController(&network_thread_)) {
network_thread_.Start();
inner_channel_ = controller_->CreateDataChannel("test", init_);
channel_ =
webrtc::SctpDataChannel::CreateProxy(inner_channel_, signaling_safety_);
}
~SctpDataChannelTest() override {
run_loop_.Flush();
signaling_safety_->SetNotAlive();
inner_channel_ = nullptr;
channel_ = nullptr;
controller_.reset();
observer_.reset();
network_thread_.Stop();
}
void SetChannelReady() {
controller_->set_transport_available(true);
StreamId sid(0);
network_thread_.BlockingCall([&]() {
RTC_DCHECK_RUN_ON(&network_thread_);
if (!inner_channel_->sid_n().HasValue()) {
inner_channel_->SetSctpSid_n(sid);
controller_->AddSctpDataStream(sid);
}
inner_channel_->OnTransportChannelCreated();
});
controller_->set_ready_to_send(true);
run_loop_.Flush();
}
// TODO(bugs.webrtc.org/11547): This mirrors what the DataChannelController
// currently does when assigning stream ids to a channel. Right now the sid
// in the SctpDataChannel code is (still) tied to the signaling thread, but
// the `AddSctpDataStream` operation is a bridge to the transport and needs
// to run on the network thread.
void SetChannelSid(const rtc::scoped_refptr<SctpDataChannel>& channel,
StreamId sid) {
RTC_DCHECK(sid.HasValue());
network_thread_.BlockingCall([&]() {
channel->SetSctpSid_n(sid);
controller_->AddSctpDataStream(sid);
});
}
void AddObserver() {
observer_.reset(new FakeDataChannelObserver());
channel_->RegisterObserver(observer_.get());
}
test::RunLoop run_loop_;
rtc::Thread network_thread_;
InternalDataChannelInit init_;
rtc::scoped_refptr<PendingTaskSafetyFlag> signaling_safety_ =
PendingTaskSafetyFlag::Create();
std::unique_ptr<FakeDataChannelController> controller_;
std::unique_ptr<FakeDataChannelObserver> observer_;
rtc::scoped_refptr<SctpDataChannel> inner_channel_;
rtc::scoped_refptr<DataChannelInterface> channel_;
};
TEST_F(SctpDataChannelTest, VerifyConfigurationGetters) {
EXPECT_EQ(channel_->label(), "test");
EXPECT_EQ(channel_->protocol(), init_.protocol);
// Note that the `init_.reliable` field is deprecated, so we directly set
// it here to match spec behavior for purposes of checking the `reliable()`
// getter.
init_.reliable = (!init_.maxRetransmits && !init_.maxRetransmitTime);
EXPECT_EQ(channel_->reliable(), init_.reliable);
EXPECT_EQ(channel_->ordered(), init_.ordered);
EXPECT_EQ(channel_->negotiated(), init_.negotiated);
EXPECT_EQ(channel_->priority(), Priority::kLow);
EXPECT_EQ(channel_->maxRetransmitTime(), static_cast<uint16_t>(-1));
EXPECT_EQ(channel_->maxPacketLifeTime(), init_.maxRetransmitTime);
EXPECT_EQ(channel_->maxRetransmits(), static_cast<uint16_t>(-1));
EXPECT_EQ(channel_->maxRetransmitsOpt(), init_.maxRetransmits);
// Check the non-const part of the configuration.
EXPECT_EQ(channel_->id(), init_.id);
network_thread_.BlockingCall(
[&]() { EXPECT_EQ(inner_channel_->sid_n(), StreamId()); });
SetChannelReady();
EXPECT_EQ(channel_->id(), 0);
network_thread_.BlockingCall(
[&]() { EXPECT_EQ(inner_channel_->sid_n(), StreamId(0)); });
}
// Verifies that the data channel is connected to the transport after creation.
TEST_F(SctpDataChannelTest, ConnectedToTransportOnCreated) {
controller_->set_transport_available(true);
rtc::scoped_refptr<SctpDataChannel> dc =
controller_->CreateDataChannel("test1", init_);
EXPECT_TRUE(controller_->IsConnected(dc.get()));
// The sid is not set yet, so it should not have added the streams.
StreamId sid = network_thread_.BlockingCall([&]() { return dc->sid_n(); });
EXPECT_FALSE(controller_->IsStreamAdded(sid));
SetChannelSid(dc, StreamId(0));
sid = network_thread_.BlockingCall([&]() { return dc->sid_n(); });
EXPECT_TRUE(controller_->IsStreamAdded(sid));
}
// Tests the state of the data channel.
TEST_F(SctpDataChannelTest, StateTransition) {
AddObserver();
EXPECT_EQ(DataChannelInterface::kConnecting, channel_->state());
EXPECT_EQ(observer_->on_state_change_count(), 0u);
SetChannelReady();
EXPECT_EQ(DataChannelInterface::kOpen, channel_->state());
EXPECT_EQ(observer_->on_state_change_count(), 1u);
// `Close()` should trigger two state changes, first `kClosing`, then
// `kClose`.
channel_->Close();
// The (simulated) transport close notifications runs on the network thread
// and posts a completion notification to the signaling (current) thread.
// Allow that operation to complete before checking the state.
run_loop_.Flush();
EXPECT_EQ(DataChannelInterface::kClosed, channel_->state());
EXPECT_EQ(observer_->on_state_change_count(), 3u);
EXPECT_TRUE(channel_->error().ok());
// Verifies that it's disconnected from the transport.
EXPECT_FALSE(controller_->IsConnected(inner_channel_.get()));
}
// Tests that DataChannel::buffered_amount() is correct after the channel is
// blocked.
TEST_F(SctpDataChannelTest, BufferedAmountWhenBlocked) {
AddObserver();
SetChannelReady();
DataBuffer buffer("abcd");
EXPECT_TRUE(channel_->Send(buffer));
size_t successful_send_count = 1;
run_loop_.Flush();
EXPECT_EQ(0U, channel_->buffered_amount());
EXPECT_EQ(successful_send_count,
observer_->on_buffered_amount_change_count());
controller_->set_send_blocked(true);
const int number_of_packets = 3;
for (int i = 0; i < number_of_packets; ++i) {
EXPECT_TRUE(channel_->Send(buffer));
}
EXPECT_EQ(buffer.data.size() * number_of_packets,
channel_->buffered_amount());
EXPECT_EQ(successful_send_count,
observer_->on_buffered_amount_change_count());
controller_->set_send_blocked(false);
run_loop_.Flush();
successful_send_count += number_of_packets;
EXPECT_EQ(0U, channel_->buffered_amount());
EXPECT_EQ(successful_send_count,
observer_->on_buffered_amount_change_count());
}
// Tests that the queued data are sent when the channel transitions from blocked
// to unblocked.
TEST_F(SctpDataChannelTest, QueuedDataSentWhenUnblocked) {
AddObserver();
SetChannelReady();
DataBuffer buffer("abcd");
controller_->set_send_blocked(true);
EXPECT_TRUE(channel_->Send(buffer));
EXPECT_EQ(0U, observer_->on_buffered_amount_change_count());
controller_->set_send_blocked(false);
SetChannelReady();
EXPECT_EQ(0U, channel_->buffered_amount());
EXPECT_EQ(1U, observer_->on_buffered_amount_change_count());
}
// Tests that no crash when the channel is blocked right away while trying to
// send queued data.
TEST_F(SctpDataChannelTest, BlockedWhenSendQueuedDataNoCrash) {
AddObserver();
SetChannelReady();
DataBuffer buffer("abcd");
controller_->set_send_blocked(true);
EXPECT_TRUE(channel_->Send(buffer));
EXPECT_EQ(0U, observer_->on_buffered_amount_change_count());
// Set channel ready while it is still blocked.
SetChannelReady();
EXPECT_EQ(buffer.size(), channel_->buffered_amount());
EXPECT_EQ(0U, observer_->on_buffered_amount_change_count());
// Unblock the channel to send queued data again, there should be no crash.
controller_->set_send_blocked(false);
SetChannelReady();
EXPECT_EQ(0U, channel_->buffered_amount());
EXPECT_EQ(1U, observer_->on_buffered_amount_change_count());
}
// Tests that DataChannel::messages_sent() and DataChannel::bytes_sent() are
// correct, sending data both while unblocked and while blocked.
TEST_F(SctpDataChannelTest, VerifyMessagesAndBytesSent) {
AddObserver();
SetChannelReady();
std::vector<DataBuffer> buffers({
DataBuffer("message 1"),
DataBuffer("msg 2"),
DataBuffer("message three"),
DataBuffer("quadra message"),
DataBuffer("fifthmsg"),
DataBuffer("message of the beast"),
});
// Default values.
EXPECT_EQ(0U, channel_->messages_sent());
EXPECT_EQ(0U, channel_->bytes_sent());
// Send three buffers while not blocked.
controller_->set_send_blocked(false);
EXPECT_TRUE(channel_->Send(buffers[0]));
EXPECT_TRUE(channel_->Send(buffers[1]));
EXPECT_TRUE(channel_->Send(buffers[2]));
size_t bytes_sent = buffers[0].size() + buffers[1].size() + buffers[2].size();
EXPECT_EQ_WAIT(0U, channel_->buffered_amount(), kDefaultTimeout);
EXPECT_EQ(3U, channel_->messages_sent());
EXPECT_EQ(bytes_sent, channel_->bytes_sent());
// Send three buffers while blocked, queuing the buffers.
controller_->set_send_blocked(true);
EXPECT_TRUE(channel_->Send(buffers[3]));
EXPECT_TRUE(channel_->Send(buffers[4]));
EXPECT_TRUE(channel_->Send(buffers[5]));
size_t bytes_queued =
buffers[3].size() + buffers[4].size() + buffers[5].size();
EXPECT_EQ(bytes_queued, channel_->buffered_amount());
EXPECT_EQ(3U, channel_->messages_sent());
EXPECT_EQ(bytes_sent, channel_->bytes_sent());
// Unblock and make sure everything was sent.
controller_->set_send_blocked(false);
EXPECT_EQ_WAIT(0U, channel_->buffered_amount(), kDefaultTimeout);
bytes_sent += bytes_queued;
EXPECT_EQ(6U, channel_->messages_sent());
EXPECT_EQ(bytes_sent, channel_->bytes_sent());
}
// Tests that the queued control message is sent when channel is ready.
TEST_F(SctpDataChannelTest, OpenMessageSent) {
// Initially the id is unassigned.
EXPECT_EQ(-1, channel_->id());
SetChannelReady();
EXPECT_GE(channel_->id(), 0);
EXPECT_EQ(DataMessageType::kControl,
controller_->last_send_data_params().type);
EXPECT_EQ(controller_->last_sid(), channel_->id());
}
TEST_F(SctpDataChannelTest, QueuedOpenMessageSent) {
controller_->set_send_blocked(true);
SetChannelReady();
controller_->set_send_blocked(false);
EXPECT_EQ(DataMessageType::kControl,
controller_->last_send_data_params().type);
EXPECT_EQ(controller_->last_sid(), channel_->id());
}
// Tests that the DataChannel created after transport gets ready can enter OPEN
// state.
TEST_F(SctpDataChannelTest, LateCreatedChannelTransitionToOpen) {
SetChannelReady();
InternalDataChannelInit init;
init.id = 1;
auto dc = webrtc::SctpDataChannel::CreateProxy(
controller_->CreateDataChannel("test1", init), signaling_safety_);
EXPECT_EQ(DataChannelInterface::kOpen, dc->state());
}
// Tests that an unordered DataChannel sends data as ordered until the OPEN_ACK
// message is received.
TEST_F(SctpDataChannelTest, SendUnorderedAfterReceivesOpenAck) {
SetChannelReady();
InternalDataChannelInit init;
init.id = 1;
init.ordered = false;
rtc::scoped_refptr<SctpDataChannel> dc =
controller_->CreateDataChannel("test1", init);
auto proxy = webrtc::SctpDataChannel::CreateProxy(dc, signaling_safety_);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, proxy->state(), 1000);
// Sends a message and verifies it's ordered.
DataBuffer buffer("some data");
ASSERT_TRUE(proxy->Send(buffer));
EXPECT_TRUE(controller_->last_send_data_params().ordered);
// Emulates receiving an OPEN_ACK message.
rtc::CopyOnWriteBuffer payload;
WriteDataChannelOpenAckMessage(&payload);
network_thread_.BlockingCall(
[&] { dc->OnDataReceived(DataMessageType::kControl, payload); });
// Sends another message and verifies it's unordered.
ASSERT_TRUE(proxy->Send(buffer));
EXPECT_FALSE(controller_->last_send_data_params().ordered);
}
// Tests that an unordered DataChannel sends unordered data after any DATA
// message is received.
TEST_F(SctpDataChannelTest, SendUnorderedAfterReceiveData) {
SetChannelReady();
InternalDataChannelInit init;
init.id = 1;
init.ordered = false;
rtc::scoped_refptr<SctpDataChannel> dc =
controller_->CreateDataChannel("test1", init);
auto proxy = webrtc::SctpDataChannel::CreateProxy(dc, signaling_safety_);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, proxy->state(), 1000);
// Emulates receiving a DATA message.
DataBuffer buffer("data");
network_thread_.BlockingCall(
[&] { dc->OnDataReceived(DataMessageType::kText, buffer.data); });
// Sends a message and verifies it's unordered.
ASSERT_TRUE(proxy->Send(buffer));
EXPECT_FALSE(controller_->last_send_data_params().ordered);
}
// Tests that the channel can't open until it's successfully sent the OPEN
// message.
TEST_F(SctpDataChannelTest, OpenWaitsForOpenMesssage) {
DataBuffer buffer("foo");
controller_->set_send_blocked(true);
SetChannelReady();
EXPECT_EQ(DataChannelInterface::kConnecting, channel_->state());
controller_->set_send_blocked(false);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, channel_->state(), 1000);
EXPECT_EQ(DataMessageType::kControl,
controller_->last_send_data_params().type);
}
// Tests that close first makes sure all queued data gets sent.
TEST_F(SctpDataChannelTest, QueuedCloseFlushes) {
DataBuffer buffer("foo");
controller_->set_send_blocked(true);
SetChannelReady();
EXPECT_EQ(DataChannelInterface::kConnecting, channel_->state());
controller_->set_send_blocked(false);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, channel_->state(), 1000);
controller_->set_send_blocked(true);
channel_->Send(buffer);
channel_->Close();
controller_->set_send_blocked(false);
EXPECT_EQ_WAIT(DataChannelInterface::kClosed, channel_->state(), 1000);
EXPECT_TRUE(channel_->error().ok());
EXPECT_EQ(DataMessageType::kText, controller_->last_send_data_params().type);
}
// Tests that messages are sent with the right id.
TEST_F(SctpDataChannelTest, SendDataId) {
SetChannelSid(inner_channel_, StreamId(1));
SetChannelReady();
DataBuffer buffer("data");
EXPECT_TRUE(channel_->Send(buffer));
EXPECT_EQ(1, controller_->last_sid());
}
// Tests that the incoming messages with right ids are accepted.
TEST_F(SctpDataChannelTest, ReceiveDataWithValidId) {
SetChannelSid(inner_channel_, StreamId(1));
SetChannelReady();
AddObserver();
DataBuffer buffer("abcd");
network_thread_.BlockingCall([&] {
inner_channel_->OnDataReceived(DataMessageType::kText, buffer.data);
});
run_loop_.Flush();
EXPECT_EQ(1U, observer_->messages_received());
}
// Tests that no CONTROL message is sent if the datachannel is negotiated and
// not created from an OPEN message.
TEST_F(SctpDataChannelTest, NoMsgSentIfNegotiatedAndNotFromOpenMsg) {
InternalDataChannelInit config;
config.id = 1;
config.negotiated = true;
config.open_handshake_role = InternalDataChannelInit::kNone;
SetChannelReady();
rtc::scoped_refptr<SctpDataChannel> dc =
controller_->CreateDataChannel("test1", config);
auto proxy = webrtc::SctpDataChannel::CreateProxy(dc, signaling_safety_);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, proxy->state(), 1000);
EXPECT_EQ(0, controller_->last_sid());
}
// Tests that DataChannel::messages_received() and DataChannel::bytes_received()
// are correct, receiving data both while not open and while open.
TEST_F(SctpDataChannelTest, VerifyMessagesAndBytesReceived) {
AddObserver();
std::vector<DataBuffer> buffers({
DataBuffer("message 1"),
DataBuffer("msg 2"),
DataBuffer("message three"),
DataBuffer("quadra message"),
DataBuffer("fifthmsg"),
DataBuffer("message of the beast"),
});
SetChannelSid(inner_channel_, StreamId(1));
// Default values.
EXPECT_EQ(0U, channel_->messages_received());
EXPECT_EQ(0U, channel_->bytes_received());
// Receive three buffers while data channel isn't open.
network_thread_.BlockingCall([&] {
for (int i : {0, 1, 2})
inner_channel_->OnDataReceived(DataMessageType::kText, buffers[i].data);
});
EXPECT_EQ(0U, observer_->messages_received());
EXPECT_EQ(0U, channel_->messages_received());
EXPECT_EQ(0U, channel_->bytes_received());
// Open channel and make sure everything was received.
SetChannelReady();
size_t bytes_received =
buffers[0].size() + buffers[1].size() + buffers[2].size();
EXPECT_EQ(3U, observer_->messages_received());
EXPECT_EQ(3U, channel_->messages_received());
EXPECT_EQ(bytes_received, channel_->bytes_received());
// Receive three buffers while open.
network_thread_.BlockingCall([&] {
for (int i : {3, 4, 5})
inner_channel_->OnDataReceived(DataMessageType::kText, buffers[i].data);
});
run_loop_.Flush();
bytes_received += buffers[3].size() + buffers[4].size() + buffers[5].size();
EXPECT_EQ(6U, observer_->messages_received());
EXPECT_EQ(6U, channel_->messages_received());
EXPECT_EQ(bytes_received, channel_->bytes_received());
}
// Tests that OPEN_ACK message is sent if the datachannel is created from an
// OPEN message.
TEST_F(SctpDataChannelTest, OpenAckSentIfCreatedFromOpenMessage) {
InternalDataChannelInit config;
config.id = 1;
config.negotiated = true;
config.open_handshake_role = InternalDataChannelInit::kAcker;
SetChannelReady();
rtc::scoped_refptr<SctpDataChannel> dc =
controller_->CreateDataChannel("test1", config);
auto proxy = webrtc::SctpDataChannel::CreateProxy(dc, signaling_safety_);
EXPECT_EQ_WAIT(DataChannelInterface::kOpen, proxy->state(), 1000);
EXPECT_EQ(config.id, controller_->last_sid());
EXPECT_EQ(DataMessageType::kControl,
controller_->last_send_data_params().type);
}
// Tests the OPEN_ACK role assigned by InternalDataChannelInit.
TEST_F(SctpDataChannelTest, OpenAckRoleInitialization) {
InternalDataChannelInit init;
EXPECT_EQ(InternalDataChannelInit::kOpener, init.open_handshake_role);
EXPECT_FALSE(init.negotiated);
DataChannelInit base;
base.negotiated = true;
InternalDataChannelInit init2(base);
EXPECT_EQ(InternalDataChannelInit::kNone, init2.open_handshake_role);
}
// Tests that that Send() returns false if the sending buffer is full
// and the channel stays open.
TEST_F(SctpDataChannelTest, OpenWhenSendBufferFull) {
SetChannelReady();
const size_t packetSize = 1024;
rtc::CopyOnWriteBuffer buffer(packetSize);
memset(buffer.MutableData(), 0, buffer.size());
DataBuffer packet(buffer, true);
controller_->set_send_blocked(true);
for (size_t i = 0; i < DataChannelInterface::MaxSendQueueSize() / packetSize;
++i) {
EXPECT_TRUE(channel_->Send(packet));
}
// The sending buffer should be full, `Send()` returns false.
EXPECT_FALSE(channel_->Send(packet));
EXPECT_TRUE(DataChannelInterface::kOpen == channel_->state());
}
// Tests that the DataChannel is closed on transport errors.
TEST_F(SctpDataChannelTest, ClosedOnTransportError) {
SetChannelReady();
DataBuffer buffer("abcd");
controller_->set_transport_error();
EXPECT_TRUE(channel_->Send(buffer));
EXPECT_EQ(DataChannelInterface::kClosed, channel_->state());
EXPECT_FALSE(channel_->error().ok());
EXPECT_EQ(RTCErrorType::NETWORK_ERROR, channel_->error().type());
EXPECT_EQ(RTCErrorDetailType::NONE, channel_->error().error_detail());
}
// Tests that the DataChannel is closed if the received buffer is full.
TEST_F(SctpDataChannelTest, ClosedWhenReceivedBufferFull) {
SetChannelReady();
rtc::CopyOnWriteBuffer buffer(1024);
memset(buffer.MutableData(), 0, buffer.size());
network_thread_.BlockingCall([&] {
// Receiving data without having an observer will overflow the buffer.
for (size_t i = 0; i < 16 * 1024 + 1; ++i) {
inner_channel_->OnDataReceived(DataMessageType::kText, buffer);
}
});
EXPECT_EQ(DataChannelInterface::kClosed, channel_->state());
EXPECT_FALSE(channel_->error().ok());
EXPECT_EQ(RTCErrorType::RESOURCE_EXHAUSTED, channel_->error().type());
EXPECT_EQ(RTCErrorDetailType::NONE, channel_->error().error_detail());
}
// Tests that sending empty data returns no error and keeps the channel open.
TEST_F(SctpDataChannelTest, SendEmptyData) {
SetChannelSid(inner_channel_, StreamId(1));
SetChannelReady();
EXPECT_EQ(DataChannelInterface::kOpen, channel_->state());
DataBuffer buffer("");
EXPECT_TRUE(channel_->Send(buffer));
EXPECT_EQ(DataChannelInterface::kOpen, channel_->state());
}
// Tests that a channel can be closed without being opened or assigned an sid.
TEST_F(SctpDataChannelTest, NeverOpened) {
controller_->set_transport_available(true);
network_thread_.BlockingCall(
[&] { inner_channel_->OnTransportChannelCreated(); });
channel_->Close();
}
// Tests that a data channel that's not connected to a transport can transition
// directly to the `kClosed` state when closed.
// See also chromium:1421534.
TEST_F(SctpDataChannelTest, UnusedTransitionsDirectlyToClosed) {
channel_->Close();
EXPECT_EQ(DataChannelInterface::kClosed, channel_->state());
}
// Test that the data channel goes to the "closed" state (and doesn't crash)
// when its transport goes away, even while data is buffered.
TEST_F(SctpDataChannelTest, TransportDestroyedWhileDataBuffered) {
SetChannelReady();
rtc::CopyOnWriteBuffer buffer(1024);
memset(buffer.MutableData(), 0, buffer.size());
DataBuffer packet(buffer, true);
// Send a packet while sending is blocked so it ends up buffered.
controller_->set_send_blocked(true);
EXPECT_TRUE(channel_->Send(packet));
// Tell the data channel that its transport is being destroyed.
// It should then stop using the transport (allowing us to delete it) and
// transition to the "closed" state.
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, "");
error.set_error_detail(RTCErrorDetailType::SCTP_FAILURE);
network_thread_.BlockingCall(
[&] { inner_channel_->OnTransportChannelClosed(error); });
controller_.reset(nullptr);
EXPECT_EQ_WAIT(DataChannelInterface::kClosed, channel_->state(),
kDefaultTimeout);
EXPECT_FALSE(channel_->error().ok());
EXPECT_EQ(RTCErrorType::OPERATION_ERROR_WITH_DATA, channel_->error().type());
EXPECT_EQ(RTCErrorDetailType::SCTP_FAILURE, channel_->error().error_detail());
}
TEST_F(SctpDataChannelTest, TransportGotErrorCode) {
SetChannelReady();
// Tell the data channel that its transport is being destroyed with an
// error code.
// It should then report that error code.
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA,
"Transport channel closed");
error.set_error_detail(RTCErrorDetailType::SCTP_FAILURE);
error.set_sctp_cause_code(
static_cast<uint16_t>(cricket::SctpErrorCauseCode::kProtocolViolation));
network_thread_.BlockingCall(
[&] { inner_channel_->OnTransportChannelClosed(error); });
controller_.reset(nullptr);
EXPECT_EQ_WAIT(DataChannelInterface::kClosed, channel_->state(),
kDefaultTimeout);
EXPECT_FALSE(channel_->error().ok());
EXPECT_EQ(RTCErrorType::OPERATION_ERROR_WITH_DATA, channel_->error().type());
EXPECT_EQ(RTCErrorDetailType::SCTP_FAILURE, channel_->error().error_detail());
EXPECT_EQ(
static_cast<uint16_t>(cricket::SctpErrorCauseCode::kProtocolViolation),
channel_->error().sctp_cause_code());
}
class SctpSidAllocatorTest : public ::testing::Test {
protected:
SctpSidAllocator allocator_;
};
// Verifies that an even SCTP id is allocated for SSL_CLIENT and an odd id for
// SSL_SERVER.
TEST_F(SctpSidAllocatorTest, SctpIdAllocationBasedOnRole) {
EXPECT_EQ(allocator_.AllocateSid(rtc::SSL_SERVER), StreamId(1));
EXPECT_EQ(allocator_.AllocateSid(rtc::SSL_CLIENT), StreamId(0));
EXPECT_EQ(allocator_.AllocateSid(rtc::SSL_SERVER), StreamId(3));
EXPECT_EQ(allocator_.AllocateSid(rtc::SSL_CLIENT), StreamId(2));
}
// Verifies that SCTP ids of existing DataChannels are not reused.
TEST_F(SctpSidAllocatorTest, SctpIdAllocationNoReuse) {
StreamId old_id(1);
EXPECT_TRUE(allocator_.ReserveSid(old_id));
StreamId new_id = allocator_.AllocateSid(rtc::SSL_SERVER);
EXPECT_TRUE(new_id.HasValue());
EXPECT_NE(old_id, new_id);
old_id = StreamId(0);
EXPECT_TRUE(allocator_.ReserveSid(old_id));
new_id = allocator_.AllocateSid(rtc::SSL_CLIENT);
EXPECT_TRUE(new_id.HasValue());
EXPECT_NE(old_id, new_id);
}
// Verifies that SCTP ids of removed DataChannels can be reused.
TEST_F(SctpSidAllocatorTest, SctpIdReusedForRemovedDataChannel) {
StreamId odd_id(1);
StreamId even_id(0);
EXPECT_TRUE(allocator_.ReserveSid(odd_id));
EXPECT_TRUE(allocator_.ReserveSid(even_id));
StreamId allocated_id = allocator_.AllocateSid(rtc::SSL_SERVER);
EXPECT_EQ(odd_id.stream_id_int() + 2, allocated_id.stream_id_int());
allocated_id = allocator_.AllocateSid(rtc::SSL_CLIENT);
EXPECT_EQ(even_id.stream_id_int() + 2, allocated_id.stream_id_int());
allocated_id = allocator_.AllocateSid(rtc::SSL_SERVER);
EXPECT_EQ(odd_id.stream_id_int() + 4, allocated_id.stream_id_int());
allocated_id = allocator_.AllocateSid(rtc::SSL_CLIENT);
EXPECT_EQ(even_id.stream_id_int() + 4, allocated_id.stream_id_int());
allocator_.ReleaseSid(odd_id);
allocator_.ReleaseSid(even_id);
// Verifies that removed ids are reused.
allocated_id = allocator_.AllocateSid(rtc::SSL_SERVER);
EXPECT_EQ(odd_id, allocated_id);
allocated_id = allocator_.AllocateSid(rtc::SSL_CLIENT);
EXPECT_EQ(even_id, allocated_id);
// Verifies that used higher ids are not reused.
allocated_id = allocator_.AllocateSid(rtc::SSL_SERVER);
EXPECT_EQ(odd_id.stream_id_int() + 6, allocated_id.stream_id_int());
allocated_id = allocator_.AllocateSid(rtc::SSL_CLIENT);
EXPECT_EQ(even_id.stream_id_int() + 6, allocated_id.stream_id_int());
}
} // namespace
} // namespace webrtc