blob: 0f99e805af81a55a06657c661ff3c43f13846490 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_UNITS_TIME_DELTA_H_
#define API_UNITS_TIME_DELTA_H_
#include <stdint.h>
#include <cmath>
#include <limits>
#include <string>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace timedelta_impl {
constexpr int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
constexpr int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
} // namespace timedelta_impl
// TimeDelta represents the difference between two timestamps. Commonly this can
// be a duration. However since two Timestamps are not guaranteed to have the
// same epoch (they might come from different computers, making exact
// synchronisation infeasible), the duration covered by a TimeDelta can be
// undefined. To simplify usage, it can be constructed and converted to
// different units, specifically seconds (s), milliseconds (ms) and
// microseconds (us).
class TimeDelta {
public:
TimeDelta() = delete;
static TimeDelta Zero() { return TimeDelta(0); }
static TimeDelta PlusInfinity() {
return TimeDelta(timedelta_impl::kPlusInfinityVal);
}
static TimeDelta MinusInfinity() {
return TimeDelta(timedelta_impl::kMinusInfinityVal);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta seconds(T seconds) {
RTC_DCHECK_GT(seconds, timedelta_impl::kMinusInfinityVal / 1000000);
RTC_DCHECK_LT(seconds, timedelta_impl::kPlusInfinityVal / 1000000);
return TimeDelta(rtc::dchecked_cast<int64_t>(seconds) * 1000000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta ms(T milliseconds) {
RTC_DCHECK_GT(milliseconds, timedelta_impl::kMinusInfinityVal / 1000);
RTC_DCHECK_LT(milliseconds, timedelta_impl::kPlusInfinityVal / 1000);
return TimeDelta(rtc::dchecked_cast<int64_t>(milliseconds) * 1000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static TimeDelta us(T microseconds) {
RTC_DCHECK_GT(microseconds, timedelta_impl::kMinusInfinityVal);
RTC_DCHECK_LT(microseconds, timedelta_impl::kPlusInfinityVal);
return TimeDelta(rtc::dchecked_cast<int64_t>(microseconds));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta seconds(T seconds) {
return TimeDelta::us(seconds * 1e6);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta ms(T milliseconds) {
return TimeDelta::us(milliseconds * 1e3);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static TimeDelta us(T microseconds) {
if (microseconds == std::numeric_limits<T>::infinity()) {
return PlusInfinity();
} else if (microseconds == -std::numeric_limits<T>::infinity()) {
return MinusInfinity();
} else {
RTC_DCHECK(!std::isnan(microseconds));
RTC_DCHECK_GT(microseconds, timedelta_impl::kMinusInfinityVal);
RTC_DCHECK_LT(microseconds, timedelta_impl::kPlusInfinityVal);
return TimeDelta(rtc::dchecked_cast<int64_t>(microseconds));
}
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type seconds() const {
return rtc::dchecked_cast<T>((us() + (us() >= 0 ? 500000 : -500000)) /
1000000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ms() const {
return rtc::dchecked_cast<T>((us() + (us() >= 0 ? 500 : -500)) / 1000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type us() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(microseconds_);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ns() const {
RTC_DCHECK_GE(us(), std::numeric_limits<T>::min() / 1000);
RTC_DCHECK_LE(us(), std::numeric_limits<T>::max() / 1000);
return rtc::dchecked_cast<T>(us() * 1000);
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type seconds()
const {
return us<T>() * 1e-6;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ms()
const {
return us<T>() * 1e-3;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type us()
const {
if (IsPlusInfinity()) {
return std::numeric_limits<T>::infinity();
} else if (IsMinusInfinity()) {
return -std::numeric_limits<T>::infinity();
} else {
return microseconds_;
}
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ns()
const {
return us<T>() * 1e3;
}
TimeDelta Abs() const { return TimeDelta::us(std::abs(us())); }
bool IsZero() const { return microseconds_ == 0; }
bool IsFinite() const { return !IsInfinite(); }
bool IsInfinite() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal ||
microseconds_ == timedelta_impl::kMinusInfinityVal;
}
bool IsPlusInfinity() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal;
}
bool IsMinusInfinity() const {
return microseconds_ == timedelta_impl::kMinusInfinityVal;
}
TimeDelta operator+(const TimeDelta& other) const {
return TimeDelta::us(us() + other.us());
}
TimeDelta operator-(const TimeDelta& other) const {
return TimeDelta::us(us() - other.us());
}
TimeDelta& operator-=(const TimeDelta& other) {
microseconds_ -= other.us();
return *this;
}
TimeDelta& operator+=(const TimeDelta& other) {
microseconds_ += other.us();
return *this;
}
double operator/(const TimeDelta& other) const {
return us<double>() / other.us<double>();
}
bool operator==(const TimeDelta& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const TimeDelta& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const TimeDelta& other) const {
return microseconds_ <= other.microseconds_;
}
bool operator>=(const TimeDelta& other) const {
return microseconds_ >= other.microseconds_;
}
bool operator>(const TimeDelta& other) const {
return microseconds_ > other.microseconds_;
}
bool operator<(const TimeDelta& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit TimeDelta(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
inline TimeDelta operator*(const TimeDelta& delta, const double& scalar) {
return TimeDelta::us(std::round(delta.us() * scalar));
}
inline TimeDelta operator*(const double& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const TimeDelta& delta, const int64_t& scalar) {
return TimeDelta::us(delta.us() * scalar);
}
inline TimeDelta operator*(const int64_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const TimeDelta& delta, const int32_t& scalar) {
return TimeDelta::us(delta.us() * scalar);
}
inline TimeDelta operator*(const int32_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator/(const TimeDelta& delta, const int64_t& scalar) {
return TimeDelta::us(delta.us() / scalar);
}
std::string ToString(const TimeDelta& value);
} // namespace webrtc
#endif // API_UNITS_TIME_DELTA_H_