blob: a66e061fb93a0047e14688fa0c0af95af9430f66 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_UNITS_TIMESTAMP_H_
#define API_UNITS_TIMESTAMP_H_
#include <stdint.h>
#include <limits>
#include <string>
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace timestamp_impl {
constexpr int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
constexpr int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
} // namespace timestamp_impl
// Timestamp represents the time that has passed since some unspecified epoch.
// The epoch is assumed to be before any represented timestamps, this means that
// negative values are not valid. The most notable feature is that the
// difference of two Timestamps results in a TimeDelta.
class Timestamp {
public:
Timestamp() = delete;
static Timestamp Infinity() {
return Timestamp(timestamp_impl::kPlusInfinityVal);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp seconds(T seconds) {
RTC_DCHECK_GE(seconds, 0);
RTC_DCHECK_LT(seconds, timestamp_impl::kPlusInfinityVal / 1000000);
return Timestamp(rtc::dchecked_cast<int64_t>(seconds) * 1000000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp ms(T milliseconds) {
RTC_DCHECK_GE(milliseconds, 0);
RTC_DCHECK_LT(milliseconds, timestamp_impl::kPlusInfinityVal / 1000);
return Timestamp(rtc::dchecked_cast<int64_t>(milliseconds) * 1000);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static Timestamp us(T microseconds) {
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp seconds(T seconds) {
return Timestamp::us(seconds * 1e6);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp ms(T milliseconds) {
return Timestamp::us(milliseconds * 1e3);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp us(T microseconds) {
if (microseconds == std::numeric_limits<double>::infinity()) {
return Infinity();
} else {
RTC_DCHECK(!std::isnan(microseconds));
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type seconds() const {
return rtc::dchecked_cast<T>((us() + 500000) / 1000000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ms() const {
return rtc::dchecked_cast<T>((us() + 500) / 1000);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type us() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(microseconds_);
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type seconds()
const {
return us<T>() * 1e-6;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type ms()
const {
return us<T>() * 1e-3;
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type us()
const {
if (IsInfinite()) {
return std::numeric_limits<T>::infinity();
} else {
return microseconds_;
}
}
bool IsInfinite() const {
return microseconds_ == timestamp_impl::kPlusInfinityVal;
}
bool IsFinite() const { return !IsInfinite(); }
TimeDelta operator-(const Timestamp& other) const {
return TimeDelta::us(us() - other.us());
}
Timestamp operator-(const TimeDelta& delta) const {
return Timestamp::us(us() - delta.us());
}
Timestamp operator+(const TimeDelta& delta) const {
return Timestamp::us(us() + delta.us());
}
Timestamp& operator-=(const TimeDelta& other) {
microseconds_ -= other.us();
return *this;
}
Timestamp& operator+=(const TimeDelta& other) {
microseconds_ += other.us();
return *this;
}
bool operator==(const Timestamp& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const Timestamp& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const Timestamp& other) const {
return microseconds_ <= other.microseconds_;
}
bool operator>=(const Timestamp& other) const {
return microseconds_ >= other.microseconds_;
}
bool operator>(const Timestamp& other) const {
return microseconds_ > other.microseconds_;
}
bool operator<(const Timestamp& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit Timestamp(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
std::string ToString(const Timestamp& value);
} // namespace webrtc
#endif // API_UNITS_TIMESTAMP_H_