|  | /* | 
|  | * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html | 
|  | * Copyright Takuya OOURA, 1996-2001 | 
|  | * | 
|  | * You may use, copy, modify and distribute this code for any purpose (include | 
|  | * commercial use) and without fee. Please refer to this package when you modify | 
|  | * this code. | 
|  | * | 
|  | * Changes: | 
|  | * Trivial type modifications by the WebRTC authors. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Fast Fourier/Cosine/Sine Transform | 
|  | dimension   :one | 
|  | data length :power of 2 | 
|  | decimation  :frequency | 
|  | radix       :4, 2 | 
|  | data        :inplace | 
|  | table       :use | 
|  | functions | 
|  | cdft: Complex Discrete Fourier Transform | 
|  | rdft: Real Discrete Fourier Transform | 
|  | ddct: Discrete Cosine Transform | 
|  | ddst: Discrete Sine Transform | 
|  | dfct: Cosine Transform of RDFT (Real Symmetric DFT) | 
|  | dfst: Sine Transform of RDFT (Real Anti-symmetric DFT) | 
|  | function prototypes | 
|  | void cdft(int, int, float *, int *, float *); | 
|  | void rdft(size_t, int, float *, size_t *, float *); | 
|  | void ddct(int, int, float *, int *, float *); | 
|  | void ddst(int, int, float *, int *, float *); | 
|  | void dfct(int, float *, float *, int *, float *); | 
|  | void dfst(int, float *, float *, int *, float *); | 
|  |  | 
|  |  | 
|  | -------- Complex DFT (Discrete Fourier Transform) -------- | 
|  | [definition] | 
|  | <case1> | 
|  | X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n | 
|  | <case2> | 
|  | X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n | 
|  | (notes: sum_j=0^n-1 is a summation from j=0 to n-1) | 
|  | [usage] | 
|  | <case1> | 
|  | ip[0] = 0; // first time only | 
|  | cdft(2*n, 1, a, ip, w); | 
|  | <case2> | 
|  | ip[0] = 0; // first time only | 
|  | cdft(2*n, -1, a, ip, w); | 
|  | [parameters] | 
|  | 2*n            :data length (int) | 
|  | n >= 1, n = power of 2 | 
|  | a[0...2*n-1]   :input/output data (float *) | 
|  | input data | 
|  | a[2*j] = Re(x[j]), | 
|  | a[2*j+1] = Im(x[j]), 0<=j<n | 
|  | output data | 
|  | a[2*k] = Re(X[k]), | 
|  | a[2*k+1] = Im(X[k]), 0<=k<n | 
|  | ip[0...*]      :work area for bit reversal (int *) | 
|  | length of ip >= 2+sqrt(n) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n/2-1]   :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | cdft(2*n, -1, a, ip, w); | 
|  | is | 
|  | cdft(2*n, 1, a, ip, w); | 
|  | for (j = 0; j <= 2 * n - 1; j++) { | 
|  | a[j] *= 1.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | -------- Real DFT / Inverse of Real DFT -------- | 
|  | [definition] | 
|  | <case1> RDFT | 
|  | R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2 | 
|  | I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2 | 
|  | <case2> IRDFT (excluding scale) | 
|  | a[k] = (R[0] + R[n/2]*cos(pi*k))/2 + | 
|  | sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) + | 
|  | sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n | 
|  | [usage] | 
|  | <case1> | 
|  | ip[0] = 0; // first time only | 
|  | rdft(n, 1, a, ip, w); | 
|  | <case2> | 
|  | ip[0] = 0; // first time only | 
|  | rdft(n, -1, a, ip, w); | 
|  | [parameters] | 
|  | n              :data length (size_t) | 
|  | n >= 2, n = power of 2 | 
|  | a[0...n-1]     :input/output data (float *) | 
|  | <case1> | 
|  | output data | 
|  | a[2*k] = R[k], 0<=k<n/2 | 
|  | a[2*k+1] = I[k], 0<k<n/2 | 
|  | a[1] = R[n/2] | 
|  | <case2> | 
|  | input data | 
|  | a[2*j] = R[j], 0<=j<n/2 | 
|  | a[2*j+1] = I[j], 0<j<n/2 | 
|  | a[1] = R[n/2] | 
|  | ip[0...*]      :work area for bit reversal (size_t *) | 
|  | length of ip >= 2+sqrt(n/2) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n/2-1]   :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | rdft(n, 1, a, ip, w); | 
|  | is | 
|  | rdft(n, -1, a, ip, w); | 
|  | for (j = 0; j <= n - 1; j++) { | 
|  | a[j] *= 2.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | -------- DCT (Discrete Cosine Transform) / Inverse of DCT -------- | 
|  | [definition] | 
|  | <case1> IDCT (excluding scale) | 
|  | C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n | 
|  | <case2> DCT | 
|  | C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n | 
|  | [usage] | 
|  | <case1> | 
|  | ip[0] = 0; // first time only | 
|  | ddct(n, 1, a, ip, w); | 
|  | <case2> | 
|  | ip[0] = 0; // first time only | 
|  | ddct(n, -1, a, ip, w); | 
|  | [parameters] | 
|  | n              :data length (int) | 
|  | n >= 2, n = power of 2 | 
|  | a[0...n-1]     :input/output data (float *) | 
|  | output data | 
|  | a[k] = C[k], 0<=k<n | 
|  | ip[0...*]      :work area for bit reversal (int *) | 
|  | length of ip >= 2+sqrt(n/2) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n*5/4-1] :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | ddct(n, -1, a, ip, w); | 
|  | is | 
|  | a[0] *= 0.5; | 
|  | ddct(n, 1, a, ip, w); | 
|  | for (j = 0; j <= n - 1; j++) { | 
|  | a[j] *= 2.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | -------- DST (Discrete Sine Transform) / Inverse of DST -------- | 
|  | [definition] | 
|  | <case1> IDST (excluding scale) | 
|  | S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n | 
|  | <case2> DST | 
|  | S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n | 
|  | [usage] | 
|  | <case1> | 
|  | ip[0] = 0; // first time only | 
|  | ddst(n, 1, a, ip, w); | 
|  | <case2> | 
|  | ip[0] = 0; // first time only | 
|  | ddst(n, -1, a, ip, w); | 
|  | [parameters] | 
|  | n              :data length (int) | 
|  | n >= 2, n = power of 2 | 
|  | a[0...n-1]     :input/output data (float *) | 
|  | <case1> | 
|  | input data | 
|  | a[j] = A[j], 0<j<n | 
|  | a[0] = A[n] | 
|  | output data | 
|  | a[k] = S[k], 0<=k<n | 
|  | <case2> | 
|  | output data | 
|  | a[k] = S[k], 0<k<n | 
|  | a[0] = S[n] | 
|  | ip[0...*]      :work area for bit reversal (int *) | 
|  | length of ip >= 2+sqrt(n/2) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n*5/4-1] :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | ddst(n, -1, a, ip, w); | 
|  | is | 
|  | a[0] *= 0.5; | 
|  | ddst(n, 1, a, ip, w); | 
|  | for (j = 0; j <= n - 1; j++) { | 
|  | a[j] *= 2.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | -------- Cosine Transform of RDFT (Real Symmetric DFT) -------- | 
|  | [definition] | 
|  | C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n | 
|  | [usage] | 
|  | ip[0] = 0; // first time only | 
|  | dfct(n, a, t, ip, w); | 
|  | [parameters] | 
|  | n              :data length - 1 (int) | 
|  | n >= 2, n = power of 2 | 
|  | a[0...n]       :input/output data (float *) | 
|  | output data | 
|  | a[k] = C[k], 0<=k<=n | 
|  | t[0...n/2]     :work area (float *) | 
|  | ip[0...*]      :work area for bit reversal (int *) | 
|  | length of ip >= 2+sqrt(n/4) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n*5/8-1] :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | a[0] *= 0.5; | 
|  | a[n] *= 0.5; | 
|  | dfct(n, a, t, ip, w); | 
|  | is | 
|  | a[0] *= 0.5; | 
|  | a[n] *= 0.5; | 
|  | dfct(n, a, t, ip, w); | 
|  | for (j = 0; j <= n; j++) { | 
|  | a[j] *= 2.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | -------- Sine Transform of RDFT (Real Anti-symmetric DFT) -------- | 
|  | [definition] | 
|  | S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n | 
|  | [usage] | 
|  | ip[0] = 0; // first time only | 
|  | dfst(n, a, t, ip, w); | 
|  | [parameters] | 
|  | n              :data length + 1 (int) | 
|  | n >= 2, n = power of 2 | 
|  | a[0...n-1]     :input/output data (float *) | 
|  | output data | 
|  | a[k] = S[k], 0<k<n | 
|  | (a[0] is used for work area) | 
|  | t[0...n/2-1]   :work area (float *) | 
|  | ip[0...*]      :work area for bit reversal (int *) | 
|  | length of ip >= 2+sqrt(n/4) | 
|  | strictly, | 
|  | length of ip >= | 
|  | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). | 
|  | ip[0],ip[1] are pointers of the cos/sin table. | 
|  | w[0...n*5/8-1] :cos/sin table (float *) | 
|  | w[],ip[] are initialized if ip[0] == 0. | 
|  | [remark] | 
|  | Inverse of | 
|  | dfst(n, a, t, ip, w); | 
|  | is | 
|  | dfst(n, a, t, ip, w); | 
|  | for (j = 1; j <= n - 1; j++) { | 
|  | a[j] *= 2.0 / n; | 
|  | } | 
|  | . | 
|  |  | 
|  |  | 
|  | Appendix : | 
|  | The cos/sin table is recalculated when the larger table required. | 
|  | w[] and ip[] are compatible with all routines. | 
|  | */ | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | static void makewt(size_t nw, size_t *ip, float *w); | 
|  | static void makect(size_t nc, size_t *ip, float *c); | 
|  | static void bitrv2(size_t n, size_t *ip, float *a); | 
|  | #if 0  // Not used. | 
|  | static void bitrv2conj(int n, int *ip, float *a); | 
|  | #endif | 
|  | static void cftfsub(size_t n, float *a, float *w); | 
|  | static void cftbsub(size_t n, float *a, float *w); | 
|  | static void cft1st(size_t n, float *a, float *w); | 
|  | static void cftmdl(size_t n, size_t l, float *a, float *w); | 
|  | static void rftfsub(size_t n, float *a, size_t nc, float *c); | 
|  | static void rftbsub(size_t n, float *a, size_t nc, float *c); | 
|  | #if 0  // Not used. | 
|  | static void dctsub(int n, float *a, int nc, float *c) | 
|  | static void dstsub(int n, float *a, int nc, float *c) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #if 0  // Not used. | 
|  | void WebRtc_cdft(int n, int isgn, float *a, int *ip, float *w) | 
|  | { | 
|  | if (n > (ip[0] << 2)) { | 
|  | makewt(n >> 2, ip, w); | 
|  | } | 
|  | if (n > 4) { | 
|  | if (isgn >= 0) { | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftfsub(n, a, w); | 
|  | } else { | 
|  | bitrv2conj(n, ip + 2, a); | 
|  | cftbsub(n, a, w); | 
|  | } | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | void WebRtc_rdft(size_t n, int isgn, float *a, size_t *ip, float *w) | 
|  | { | 
|  | size_t nw, nc; | 
|  | float xi; | 
|  |  | 
|  | nw = ip[0]; | 
|  | if (n > (nw << 2)) { | 
|  | nw = n >> 2; | 
|  | makewt(nw, ip, w); | 
|  | } | 
|  | nc = ip[1]; | 
|  | if (n > (nc << 2)) { | 
|  | nc = n >> 2; | 
|  | makect(nc, ip, w + nw); | 
|  | } | 
|  | if (isgn >= 0) { | 
|  | if (n > 4) { | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftfsub(n, a, w); | 
|  | rftfsub(n, a, nc, w + nw); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | xi = a[0] - a[1]; | 
|  | a[0] += a[1]; | 
|  | a[1] = xi; | 
|  | } else { | 
|  | a[1] = 0.5f * (a[0] - a[1]); | 
|  | a[0] -= a[1]; | 
|  | if (n > 4) { | 
|  | rftbsub(n, a, nc, w + nw); | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftbsub(n, a, w); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0  // Not used. | 
|  | static void ddct(int n, int isgn, float *a, int *ip, float *w) | 
|  | { | 
|  | int j, nw, nc; | 
|  | float xr; | 
|  |  | 
|  | nw = ip[0]; | 
|  | if (n > (nw << 2)) { | 
|  | nw = n >> 2; | 
|  | makewt(nw, ip, w); | 
|  | } | 
|  | nc = ip[1]; | 
|  | if (n > nc) { | 
|  | nc = n; | 
|  | makect(nc, ip, w + nw); | 
|  | } | 
|  | if (isgn < 0) { | 
|  | xr = a[n - 1]; | 
|  | for (j = n - 2; j >= 2; j -= 2) { | 
|  | a[j + 1] = a[j] - a[j - 1]; | 
|  | a[j] += a[j - 1]; | 
|  | } | 
|  | a[1] = a[0] - xr; | 
|  | a[0] += xr; | 
|  | if (n > 4) { | 
|  | rftbsub(n, a, nc, w + nw); | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftbsub(n, a, w); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | } | 
|  | dctsub(n, a, nc, w + nw); | 
|  | if (isgn >= 0) { | 
|  | if (n > 4) { | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftfsub(n, a, w); | 
|  | rftfsub(n, a, nc, w + nw); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | xr = a[0] - a[1]; | 
|  | a[0] += a[1]; | 
|  | for (j = 2; j < n; j += 2) { | 
|  | a[j - 1] = a[j] - a[j + 1]; | 
|  | a[j] += a[j + 1]; | 
|  | } | 
|  | a[n - 1] = xr; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void ddst(int n, int isgn, float *a, int *ip, float *w) | 
|  | { | 
|  | int j, nw, nc; | 
|  | float xr; | 
|  |  | 
|  | nw = ip[0]; | 
|  | if (n > (nw << 2)) { | 
|  | nw = n >> 2; | 
|  | makewt(nw, ip, w); | 
|  | } | 
|  | nc = ip[1]; | 
|  | if (n > nc) { | 
|  | nc = n; | 
|  | makect(nc, ip, w + nw); | 
|  | } | 
|  | if (isgn < 0) { | 
|  | xr = a[n - 1]; | 
|  | for (j = n - 2; j >= 2; j -= 2) { | 
|  | a[j + 1] = -a[j] - a[j - 1]; | 
|  | a[j] -= a[j - 1]; | 
|  | } | 
|  | a[1] = a[0] + xr; | 
|  | a[0] -= xr; | 
|  | if (n > 4) { | 
|  | rftbsub(n, a, nc, w + nw); | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftbsub(n, a, w); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | } | 
|  | dstsub(n, a, nc, w + nw); | 
|  | if (isgn >= 0) { | 
|  | if (n > 4) { | 
|  | bitrv2(n, ip + 2, a); | 
|  | cftfsub(n, a, w); | 
|  | rftfsub(n, a, nc, w + nw); | 
|  | } else if (n == 4) { | 
|  | cftfsub(n, a, w); | 
|  | } | 
|  | xr = a[0] - a[1]; | 
|  | a[0] += a[1]; | 
|  | for (j = 2; j < n; j += 2) { | 
|  | a[j - 1] = -a[j] - a[j + 1]; | 
|  | a[j] -= a[j + 1]; | 
|  | } | 
|  | a[n - 1] = -xr; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void dfct(int n, float *a, float *t, int *ip, float *w) | 
|  | { | 
|  | int j, k, l, m, mh, nw, nc; | 
|  | float xr, xi, yr, yi; | 
|  |  | 
|  | nw = ip[0]; | 
|  | if (n > (nw << 3)) { | 
|  | nw = n >> 3; | 
|  | makewt(nw, ip, w); | 
|  | } | 
|  | nc = ip[1]; | 
|  | if (n > (nc << 1)) { | 
|  | nc = n >> 1; | 
|  | makect(nc, ip, w + nw); | 
|  | } | 
|  | m = n >> 1; | 
|  | yi = a[m]; | 
|  | xi = a[0] + a[n]; | 
|  | a[0] -= a[n]; | 
|  | t[0] = xi - yi; | 
|  | t[m] = xi + yi; | 
|  | if (n > 2) { | 
|  | mh = m >> 1; | 
|  | for (j = 1; j < mh; j++) { | 
|  | k = m - j; | 
|  | xr = a[j] - a[n - j]; | 
|  | xi = a[j] + a[n - j]; | 
|  | yr = a[k] - a[n - k]; | 
|  | yi = a[k] + a[n - k]; | 
|  | a[j] = xr; | 
|  | a[k] = yr; | 
|  | t[j] = xi - yi; | 
|  | t[k] = xi + yi; | 
|  | } | 
|  | t[mh] = a[mh] + a[n - mh]; | 
|  | a[mh] -= a[n - mh]; | 
|  | dctsub(m, a, nc, w + nw); | 
|  | if (m > 4) { | 
|  | bitrv2(m, ip + 2, a); | 
|  | cftfsub(m, a, w); | 
|  | rftfsub(m, a, nc, w + nw); | 
|  | } else if (m == 4) { | 
|  | cftfsub(m, a, w); | 
|  | } | 
|  | a[n - 1] = a[0] - a[1]; | 
|  | a[1] = a[0] + a[1]; | 
|  | for (j = m - 2; j >= 2; j -= 2) { | 
|  | a[2 * j + 1] = a[j] + a[j + 1]; | 
|  | a[2 * j - 1] = a[j] - a[j + 1]; | 
|  | } | 
|  | l = 2; | 
|  | m = mh; | 
|  | while (m >= 2) { | 
|  | dctsub(m, t, nc, w + nw); | 
|  | if (m > 4) { | 
|  | bitrv2(m, ip + 2, t); | 
|  | cftfsub(m, t, w); | 
|  | rftfsub(m, t, nc, w + nw); | 
|  | } else if (m == 4) { | 
|  | cftfsub(m, t, w); | 
|  | } | 
|  | a[n - l] = t[0] - t[1]; | 
|  | a[l] = t[0] + t[1]; | 
|  | k = 0; | 
|  | for (j = 2; j < m; j += 2) { | 
|  | k += l << 2; | 
|  | a[k - l] = t[j] - t[j + 1]; | 
|  | a[k + l] = t[j] + t[j + 1]; | 
|  | } | 
|  | l <<= 1; | 
|  | mh = m >> 1; | 
|  | for (j = 0; j < mh; j++) { | 
|  | k = m - j; | 
|  | t[j] = t[m + k] - t[m + j]; | 
|  | t[k] = t[m + k] + t[m + j]; | 
|  | } | 
|  | t[mh] = t[m + mh]; | 
|  | m = mh; | 
|  | } | 
|  | a[l] = t[0]; | 
|  | a[n] = t[2] - t[1]; | 
|  | a[0] = t[2] + t[1]; | 
|  | } else { | 
|  | a[1] = a[0]; | 
|  | a[2] = t[0]; | 
|  | a[0] = t[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dfst(int n, float *a, float *t, int *ip, float *w) | 
|  | { | 
|  | int j, k, l, m, mh, nw, nc; | 
|  | float xr, xi, yr, yi; | 
|  |  | 
|  | nw = ip[0]; | 
|  | if (n > (nw << 3)) { | 
|  | nw = n >> 3; | 
|  | makewt(nw, ip, w); | 
|  | } | 
|  | nc = ip[1]; | 
|  | if (n > (nc << 1)) { | 
|  | nc = n >> 1; | 
|  | makect(nc, ip, w + nw); | 
|  | } | 
|  | if (n > 2) { | 
|  | m = n >> 1; | 
|  | mh = m >> 1; | 
|  | for (j = 1; j < mh; j++) { | 
|  | k = m - j; | 
|  | xr = a[j] + a[n - j]; | 
|  | xi = a[j] - a[n - j]; | 
|  | yr = a[k] + a[n - k]; | 
|  | yi = a[k] - a[n - k]; | 
|  | a[j] = xr; | 
|  | a[k] = yr; | 
|  | t[j] = xi + yi; | 
|  | t[k] = xi - yi; | 
|  | } | 
|  | t[0] = a[mh] - a[n - mh]; | 
|  | a[mh] += a[n - mh]; | 
|  | a[0] = a[m]; | 
|  | dstsub(m, a, nc, w + nw); | 
|  | if (m > 4) { | 
|  | bitrv2(m, ip + 2, a); | 
|  | cftfsub(m, a, w); | 
|  | rftfsub(m, a, nc, w + nw); | 
|  | } else if (m == 4) { | 
|  | cftfsub(m, a, w); | 
|  | } | 
|  | a[n - 1] = a[1] - a[0]; | 
|  | a[1] = a[0] + a[1]; | 
|  | for (j = m - 2; j >= 2; j -= 2) { | 
|  | a[2 * j + 1] = a[j] - a[j + 1]; | 
|  | a[2 * j - 1] = -a[j] - a[j + 1]; | 
|  | } | 
|  | l = 2; | 
|  | m = mh; | 
|  | while (m >= 2) { | 
|  | dstsub(m, t, nc, w + nw); | 
|  | if (m > 4) { | 
|  | bitrv2(m, ip + 2, t); | 
|  | cftfsub(m, t, w); | 
|  | rftfsub(m, t, nc, w + nw); | 
|  | } else if (m == 4) { | 
|  | cftfsub(m, t, w); | 
|  | } | 
|  | a[n - l] = t[1] - t[0]; | 
|  | a[l] = t[0] + t[1]; | 
|  | k = 0; | 
|  | for (j = 2; j < m; j += 2) { | 
|  | k += l << 2; | 
|  | a[k - l] = -t[j] - t[j + 1]; | 
|  | a[k + l] = t[j] - t[j + 1]; | 
|  | } | 
|  | l <<= 1; | 
|  | mh = m >> 1; | 
|  | for (j = 1; j < mh; j++) { | 
|  | k = m - j; | 
|  | t[j] = t[m + k] + t[m + j]; | 
|  | t[k] = t[m + k] - t[m + j]; | 
|  | } | 
|  | t[0] = t[m + mh]; | 
|  | m = mh; | 
|  | } | 
|  | a[l] = t[0]; | 
|  | } | 
|  | a[0] = 0; | 
|  | } | 
|  | #endif  // Not used. | 
|  |  | 
|  |  | 
|  | /* -------- initializing routines -------- */ | 
|  |  | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | static void makewt(size_t nw, size_t *ip, float *w) | 
|  | { | 
|  | size_t j, nwh; | 
|  | float delta, x, y; | 
|  |  | 
|  | ip[0] = nw; | 
|  | ip[1] = 1; | 
|  | if (nw > 2) { | 
|  | nwh = nw >> 1; | 
|  | delta = atanf(1.0f) / nwh; | 
|  | w[0] = 1; | 
|  | w[1] = 0; | 
|  | w[nwh] = (float)cos(delta * nwh); | 
|  | w[nwh + 1] = w[nwh]; | 
|  | if (nwh > 2) { | 
|  | for (j = 2; j < nwh; j += 2) { | 
|  | x = (float)cos(delta * j); | 
|  | y = (float)sin(delta * j); | 
|  | w[j] = x; | 
|  | w[j + 1] = y; | 
|  | w[nw - j] = y; | 
|  | w[nw - j + 1] = x; | 
|  | } | 
|  | bitrv2(nw, ip + 2, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void makect(size_t nc, size_t *ip, float *c) | 
|  | { | 
|  | size_t j, nch; | 
|  | float delta; | 
|  |  | 
|  | ip[1] = nc; | 
|  | if (nc > 1) { | 
|  | nch = nc >> 1; | 
|  | delta = atanf(1.0f) / nch; | 
|  | c[0] = (float)cos(delta * nch); | 
|  | c[nch] = 0.5f * c[0]; | 
|  | for (j = 1; j < nch; j++) { | 
|  | c[j] = 0.5f * (float)cos(delta * j); | 
|  | c[nc - j] = 0.5f * (float)sin(delta * j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* -------- child routines -------- */ | 
|  |  | 
|  |  | 
|  | static void bitrv2(size_t n, size_t *ip, float *a) | 
|  | { | 
|  | size_t j, j1, k, k1, l, m, m2; | 
|  | float xr, xi, yr, yi; | 
|  |  | 
|  | ip[0] = 0; | 
|  | l = n; | 
|  | m = 1; | 
|  | while ((m << 3) < l) { | 
|  | l >>= 1; | 
|  | for (j = 0; j < m; j++) { | 
|  | ip[m + j] = ip[j] + l; | 
|  | } | 
|  | m <<= 1; | 
|  | } | 
|  | m2 = 2 * m; | 
|  | if ((m << 3) == l) { | 
|  | for (k = 0; k < m; k++) { | 
|  | for (j = 0; j < k; j++) { | 
|  | j1 = 2 * j + ip[k]; | 
|  | k1 = 2 * k + ip[j]; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += 2 * m2; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 -= m2; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += 2 * m2; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | } | 
|  | j1 = 2 * k + m2 + ip[k]; | 
|  | k1 = j1 + m2; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | } | 
|  | } else { | 
|  | for (k = 1; k < m; k++) { | 
|  | for (j = 0; j < k; j++) { | 
|  | j1 = 2 * j + ip[k]; | 
|  | k1 = 2 * k + ip[j]; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += m2; | 
|  | xr = a[j1]; | 
|  | xi = a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0  // Not used. | 
|  | static void bitrv2conj(int n, int *ip, float *a) | 
|  | { | 
|  | int j, j1, k, k1, l, m, m2; | 
|  | float xr, xi, yr, yi; | 
|  |  | 
|  | ip[0] = 0; | 
|  | l = n; | 
|  | m = 1; | 
|  | while ((m << 3) < l) { | 
|  | l >>= 1; | 
|  | for (j = 0; j < m; j++) { | 
|  | ip[m + j] = ip[j] + l; | 
|  | } | 
|  | m <<= 1; | 
|  | } | 
|  | m2 = 2 * m; | 
|  | if ((m << 3) == l) { | 
|  | for (k = 0; k < m; k++) { | 
|  | for (j = 0; j < k; j++) { | 
|  | j1 = 2 * j + ip[k]; | 
|  | k1 = 2 * k + ip[j]; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += 2 * m2; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 -= m2; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += 2 * m2; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | } | 
|  | k1 = 2 * k + ip[k]; | 
|  | a[k1 + 1] = -a[k1 + 1]; | 
|  | j1 = k1 + m2; | 
|  | k1 = j1 + m2; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | k1 += m2; | 
|  | a[k1 + 1] = -a[k1 + 1]; | 
|  | } | 
|  | } else { | 
|  | a[1] = -a[1]; | 
|  | a[m2 + 1] = -a[m2 + 1]; | 
|  | for (k = 1; k < m; k++) { | 
|  | for (j = 0; j < k; j++) { | 
|  | j1 = 2 * j + ip[k]; | 
|  | k1 = 2 * k + ip[j]; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | j1 += m2; | 
|  | k1 += m2; | 
|  | xr = a[j1]; | 
|  | xi = -a[j1 + 1]; | 
|  | yr = a[k1]; | 
|  | yi = -a[k1 + 1]; | 
|  | a[j1] = yr; | 
|  | a[j1 + 1] = yi; | 
|  | a[k1] = xr; | 
|  | a[k1 + 1] = xi; | 
|  | } | 
|  | k1 = 2 * k + ip[k]; | 
|  | a[k1 + 1] = -a[k1 + 1]; | 
|  | a[k1 + m2 + 1] = -a[k1 + m2 + 1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void cftfsub(size_t n, float *a, float *w) | 
|  | { | 
|  | size_t j, j1, j2, j3, l; | 
|  | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | 
|  |  | 
|  | l = 2; | 
|  | if (n > 8) { | 
|  | cft1st(n, a, w); | 
|  | l = 8; | 
|  | while ((l << 2) < n) { | 
|  | cftmdl(n, l, a, w); | 
|  | l <<= 2; | 
|  | } | 
|  | } | 
|  | if ((l << 2) == n) { | 
|  | for (j = 0; j < l; j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = a[j + 1] + a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = a[j + 1] - a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | a[j2] = x0r - x2r; | 
|  | a[j2 + 1] = x0i - x2i; | 
|  | a[j1] = x1r - x3i; | 
|  | a[j1 + 1] = x1i + x3r; | 
|  | a[j3] = x1r + x3i; | 
|  | a[j3 + 1] = x1i - x3r; | 
|  | } | 
|  | } else { | 
|  | for (j = 0; j < l; j += 2) { | 
|  | j1 = j + l; | 
|  | x0r = a[j] - a[j1]; | 
|  | x0i = a[j + 1] - a[j1 + 1]; | 
|  | a[j] += a[j1]; | 
|  | a[j + 1] += a[j1 + 1]; | 
|  | a[j1] = x0r; | 
|  | a[j1 + 1] = x0i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cftbsub(size_t n, float *a, float *w) | 
|  | { | 
|  | size_t j, j1, j2, j3, l; | 
|  | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | 
|  |  | 
|  | l = 2; | 
|  | if (n > 8) { | 
|  | cft1st(n, a, w); | 
|  | l = 8; | 
|  | while ((l << 2) < n) { | 
|  | cftmdl(n, l, a, w); | 
|  | l <<= 2; | 
|  | } | 
|  | } | 
|  | if ((l << 2) == n) { | 
|  | for (j = 0; j < l; j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = -a[j + 1] - a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = -a[j + 1] + a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i - x2i; | 
|  | a[j2] = x0r - x2r; | 
|  | a[j2 + 1] = x0i + x2i; | 
|  | a[j1] = x1r - x3i; | 
|  | a[j1 + 1] = x1i - x3r; | 
|  | a[j3] = x1r + x3i; | 
|  | a[j3 + 1] = x1i + x3r; | 
|  | } | 
|  | } else { | 
|  | for (j = 0; j < l; j += 2) { | 
|  | j1 = j + l; | 
|  | x0r = a[j] - a[j1]; | 
|  | x0i = -a[j + 1] + a[j1 + 1]; | 
|  | a[j] += a[j1]; | 
|  | a[j + 1] = -a[j + 1] - a[j1 + 1]; | 
|  | a[j1] = x0r; | 
|  | a[j1 + 1] = x0i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cft1st(size_t n, float *a, float *w) | 
|  | { | 
|  | size_t j, k1, k2; | 
|  | float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; | 
|  | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | 
|  |  | 
|  | x0r = a[0] + a[2]; | 
|  | x0i = a[1] + a[3]; | 
|  | x1r = a[0] - a[2]; | 
|  | x1i = a[1] - a[3]; | 
|  | x2r = a[4] + a[6]; | 
|  | x2i = a[5] + a[7]; | 
|  | x3r = a[4] - a[6]; | 
|  | x3i = a[5] - a[7]; | 
|  | a[0] = x0r + x2r; | 
|  | a[1] = x0i + x2i; | 
|  | a[4] = x0r - x2r; | 
|  | a[5] = x0i - x2i; | 
|  | a[2] = x1r - x3i; | 
|  | a[3] = x1i + x3r; | 
|  | a[6] = x1r + x3i; | 
|  | a[7] = x1i - x3r; | 
|  | wk1r = w[2]; | 
|  | x0r = a[8] + a[10]; | 
|  | x0i = a[9] + a[11]; | 
|  | x1r = a[8] - a[10]; | 
|  | x1i = a[9] - a[11]; | 
|  | x2r = a[12] + a[14]; | 
|  | x2i = a[13] + a[15]; | 
|  | x3r = a[12] - a[14]; | 
|  | x3i = a[13] - a[15]; | 
|  | a[8] = x0r + x2r; | 
|  | a[9] = x0i + x2i; | 
|  | a[12] = x2i - x0i; | 
|  | a[13] = x0r - x2r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[10] = wk1r * (x0r - x0i); | 
|  | a[11] = wk1r * (x0r + x0i); | 
|  | x0r = x3i + x1r; | 
|  | x0i = x3r - x1i; | 
|  | a[14] = wk1r * (x0i - x0r); | 
|  | a[15] = wk1r * (x0i + x0r); | 
|  | k1 = 0; | 
|  | for (j = 16; j < n; j += 16) { | 
|  | k1 += 2; | 
|  | k2 = 2 * k1; | 
|  | wk2r = w[k1]; | 
|  | wk2i = w[k1 + 1]; | 
|  | wk1r = w[k2]; | 
|  | wk1i = w[k2 + 1]; | 
|  | wk3r = wk1r - 2 * wk2i * wk1i; | 
|  | wk3i = 2 * wk2i * wk1r - wk1i; | 
|  | x0r = a[j] + a[j + 2]; | 
|  | x0i = a[j + 1] + a[j + 3]; | 
|  | x1r = a[j] - a[j + 2]; | 
|  | x1i = a[j + 1] - a[j + 3]; | 
|  | x2r = a[j + 4] + a[j + 6]; | 
|  | x2i = a[j + 5] + a[j + 7]; | 
|  | x3r = a[j + 4] - a[j + 6]; | 
|  | x3i = a[j + 5] - a[j + 7]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | x0r -= x2r; | 
|  | x0i -= x2i; | 
|  | a[j + 4] = wk2r * x0r - wk2i * x0i; | 
|  | a[j + 5] = wk2r * x0i + wk2i * x0r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[j + 2] = wk1r * x0r - wk1i * x0i; | 
|  | a[j + 3] = wk1r * x0i + wk1i * x0r; | 
|  | x0r = x1r + x3i; | 
|  | x0i = x1i - x3r; | 
|  | a[j + 6] = wk3r * x0r - wk3i * x0i; | 
|  | a[j + 7] = wk3r * x0i + wk3i * x0r; | 
|  | wk1r = w[k2 + 2]; | 
|  | wk1i = w[k2 + 3]; | 
|  | wk3r = wk1r - 2 * wk2r * wk1i; | 
|  | wk3i = 2 * wk2r * wk1r - wk1i; | 
|  | x0r = a[j + 8] + a[j + 10]; | 
|  | x0i = a[j + 9] + a[j + 11]; | 
|  | x1r = a[j + 8] - a[j + 10]; | 
|  | x1i = a[j + 9] - a[j + 11]; | 
|  | x2r = a[j + 12] + a[j + 14]; | 
|  | x2i = a[j + 13] + a[j + 15]; | 
|  | x3r = a[j + 12] - a[j + 14]; | 
|  | x3i = a[j + 13] - a[j + 15]; | 
|  | a[j + 8] = x0r + x2r; | 
|  | a[j + 9] = x0i + x2i; | 
|  | x0r -= x2r; | 
|  | x0i -= x2i; | 
|  | a[j + 12] = -wk2i * x0r - wk2r * x0i; | 
|  | a[j + 13] = -wk2i * x0i + wk2r * x0r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[j + 10] = wk1r * x0r - wk1i * x0i; | 
|  | a[j + 11] = wk1r * x0i + wk1i * x0r; | 
|  | x0r = x1r + x3i; | 
|  | x0i = x1i - x3r; | 
|  | a[j + 14] = wk3r * x0r - wk3i * x0i; | 
|  | a[j + 15] = wk3r * x0i + wk3i * x0r; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cftmdl(size_t n, size_t l, float *a, float *w) | 
|  | { | 
|  | size_t j, j1, j2, j3, k, k1, k2, m, m2; | 
|  | float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; | 
|  | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; | 
|  |  | 
|  | m = l << 2; | 
|  | for (j = 0; j < l; j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = a[j + 1] + a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = a[j + 1] - a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | a[j2] = x0r - x2r; | 
|  | a[j2 + 1] = x0i - x2i; | 
|  | a[j1] = x1r - x3i; | 
|  | a[j1 + 1] = x1i + x3r; | 
|  | a[j3] = x1r + x3i; | 
|  | a[j3 + 1] = x1i - x3r; | 
|  | } | 
|  | wk1r = w[2]; | 
|  | for (j = m; j < l + m; j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = a[j + 1] + a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = a[j + 1] - a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | a[j2] = x2i - x0i; | 
|  | a[j2 + 1] = x0r - x2r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[j1] = wk1r * (x0r - x0i); | 
|  | a[j1 + 1] = wk1r * (x0r + x0i); | 
|  | x0r = x3i + x1r; | 
|  | x0i = x3r - x1i; | 
|  | a[j3] = wk1r * (x0i - x0r); | 
|  | a[j3 + 1] = wk1r * (x0i + x0r); | 
|  | } | 
|  | k1 = 0; | 
|  | m2 = 2 * m; | 
|  | for (k = m2; k < n; k += m2) { | 
|  | k1 += 2; | 
|  | k2 = 2 * k1; | 
|  | wk2r = w[k1]; | 
|  | wk2i = w[k1 + 1]; | 
|  | wk1r = w[k2]; | 
|  | wk1i = w[k2 + 1]; | 
|  | wk3r = wk1r - 2 * wk2i * wk1i; | 
|  | wk3i = 2 * wk2i * wk1r - wk1i; | 
|  | for (j = k; j < l + k; j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = a[j + 1] + a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = a[j + 1] - a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | x0r -= x2r; | 
|  | x0i -= x2i; | 
|  | a[j2] = wk2r * x0r - wk2i * x0i; | 
|  | a[j2 + 1] = wk2r * x0i + wk2i * x0r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[j1] = wk1r * x0r - wk1i * x0i; | 
|  | a[j1 + 1] = wk1r * x0i + wk1i * x0r; | 
|  | x0r = x1r + x3i; | 
|  | x0i = x1i - x3r; | 
|  | a[j3] = wk3r * x0r - wk3i * x0i; | 
|  | a[j3 + 1] = wk3r * x0i + wk3i * x0r; | 
|  | } | 
|  | wk1r = w[k2 + 2]; | 
|  | wk1i = w[k2 + 3]; | 
|  | wk3r = wk1r - 2 * wk2r * wk1i; | 
|  | wk3i = 2 * wk2r * wk1r - wk1i; | 
|  | for (j = k + m; j < l + (k + m); j += 2) { | 
|  | j1 = j + l; | 
|  | j2 = j1 + l; | 
|  | j3 = j2 + l; | 
|  | x0r = a[j] + a[j1]; | 
|  | x0i = a[j + 1] + a[j1 + 1]; | 
|  | x1r = a[j] - a[j1]; | 
|  | x1i = a[j + 1] - a[j1 + 1]; | 
|  | x2r = a[j2] + a[j3]; | 
|  | x2i = a[j2 + 1] + a[j3 + 1]; | 
|  | x3r = a[j2] - a[j3]; | 
|  | x3i = a[j2 + 1] - a[j3 + 1]; | 
|  | a[j] = x0r + x2r; | 
|  | a[j + 1] = x0i + x2i; | 
|  | x0r -= x2r; | 
|  | x0i -= x2i; | 
|  | a[j2] = -wk2i * x0r - wk2r * x0i; | 
|  | a[j2 + 1] = -wk2i * x0i + wk2r * x0r; | 
|  | x0r = x1r - x3i; | 
|  | x0i = x1i + x3r; | 
|  | a[j1] = wk1r * x0r - wk1i * x0i; | 
|  | a[j1 + 1] = wk1r * x0i + wk1i * x0r; | 
|  | x0r = x1r + x3i; | 
|  | x0i = x1i - x3r; | 
|  | a[j3] = wk3r * x0r - wk3i * x0i; | 
|  | a[j3 + 1] = wk3r * x0i + wk3i * x0r; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void rftfsub(size_t n, float *a, size_t nc, float *c) | 
|  | { | 
|  | size_t j, k, kk, ks, m; | 
|  | float wkr, wki, xr, xi, yr, yi; | 
|  |  | 
|  | m = n >> 1; | 
|  | ks = 2 * nc / m; | 
|  | kk = 0; | 
|  | for (j = 2; j < m; j += 2) { | 
|  | k = n - j; | 
|  | kk += ks; | 
|  | wkr = 0.5f - c[nc - kk]; | 
|  | wki = c[kk]; | 
|  | xr = a[j] - a[k]; | 
|  | xi = a[j + 1] + a[k + 1]; | 
|  | yr = wkr * xr - wki * xi; | 
|  | yi = wkr * xi + wki * xr; | 
|  | a[j] -= yr; | 
|  | a[j + 1] -= yi; | 
|  | a[k] += yr; | 
|  | a[k + 1] -= yi; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void rftbsub(size_t n, float *a, size_t nc, float *c) | 
|  | { | 
|  | size_t j, k, kk, ks, m; | 
|  | float wkr, wki, xr, xi, yr, yi; | 
|  |  | 
|  | a[1] = -a[1]; | 
|  | m = n >> 1; | 
|  | ks = 2 * nc / m; | 
|  | kk = 0; | 
|  | for (j = 2; j < m; j += 2) { | 
|  | k = n - j; | 
|  | kk += ks; | 
|  | wkr = 0.5f - c[nc - kk]; | 
|  | wki = c[kk]; | 
|  | xr = a[j] - a[k]; | 
|  | xi = a[j + 1] + a[k + 1]; | 
|  | yr = wkr * xr + wki * xi; | 
|  | yi = wkr * xi - wki * xr; | 
|  | a[j] -= yr; | 
|  | a[j + 1] = yi - a[j + 1]; | 
|  | a[k] += yr; | 
|  | a[k + 1] = yi - a[k + 1]; | 
|  | } | 
|  | a[m + 1] = -a[m + 1]; | 
|  | } | 
|  |  | 
|  | #if 0  // Not used. | 
|  | static void dctsub(int n, float *a, int nc, float *c) | 
|  | { | 
|  | int j, k, kk, ks, m; | 
|  | float wkr, wki, xr; | 
|  |  | 
|  | m = n >> 1; | 
|  | ks = nc / n; | 
|  | kk = 0; | 
|  | for (j = 1; j < m; j++) { | 
|  | k = n - j; | 
|  | kk += ks; | 
|  | wkr = c[kk] - c[nc - kk]; | 
|  | wki = c[kk] + c[nc - kk]; | 
|  | xr = wki * a[j] - wkr * a[k]; | 
|  | a[j] = wkr * a[j] + wki * a[k]; | 
|  | a[k] = xr; | 
|  | } | 
|  | a[m] *= c[0]; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void dstsub(int n, float *a, int nc, float *c) | 
|  | { | 
|  | int j, k, kk, ks, m; | 
|  | float wkr, wki, xr; | 
|  |  | 
|  | m = n >> 1; | 
|  | ks = nc / n; | 
|  | kk = 0; | 
|  | for (j = 1; j < m; j++) { | 
|  | k = n - j; | 
|  | kk += ks; | 
|  | wkr = c[kk] - c[nc - kk]; | 
|  | wki = c[kk] + c[nc - kk]; | 
|  | xr = wki * a[k] - wkr * a[j]; | 
|  | a[k] = wkr * a[k] + wki * a[j]; | 
|  | a[j] = xr; | 
|  | } | 
|  | a[m] *= c[0]; | 
|  | } | 
|  | #endif  // Not used. |