blob: 9c1ba429fcee6e4094be952bfb42f058a770c894 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <utility>
#include "absl/memory/memory.h"
#include "call/call.h"
#include "call/fake_network_pipe.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
constexpr int64_t kDefaultProcessIntervalMs = 5;
constexpr int64_t kLogIntervalMs = 5000;
} // namespace
NetworkPacket::NetworkPacket(rtc::CopyOnWriteBuffer packet,
int64_t send_time,
int64_t arrival_time,
absl::optional<PacketOptions> packet_options,
bool is_rtcp,
MediaType media_type,
absl::optional<PacketTime> packet_time)
: packet_(std::move(packet)),
send_time_(send_time),
arrival_time_(arrival_time),
packet_options_(packet_options),
is_rtcp_(is_rtcp),
media_type_(media_type),
packet_time_(packet_time) {}
NetworkPacket::NetworkPacket(NetworkPacket&& o)
: packet_(std::move(o.packet_)),
send_time_(o.send_time_),
arrival_time_(o.arrival_time_),
packet_options_(o.packet_options_),
is_rtcp_(o.is_rtcp_),
media_type_(o.media_type_),
packet_time_(o.packet_time_) {}
NetworkPacket::~NetworkPacket() = default;
NetworkPacket& NetworkPacket::operator=(NetworkPacket&& o) {
packet_ = std::move(o.packet_);
send_time_ = o.send_time_;
arrival_time_ = o.arrival_time_;
packet_options_ = o.packet_options_;
is_rtcp_ = o.is_rtcp_;
media_type_ = o.media_type_;
packet_time_ = o.packet_time_;
return *this;
}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config)
: FakeNetworkPipe(clock, config, nullptr, 1) {}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
PacketReceiver* receiver)
: FakeNetworkPipe(clock, config, receiver, 1) {}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
PacketReceiver* receiver,
uint64_t seed)
: clock_(clock),
network_simulation_(absl::make_unique<SimulatedNetwork>(config, seed)),
receiver_(receiver),
transport_(nullptr),
clock_offset_ms_(0),
dropped_packets_(0),
sent_packets_(0),
total_packet_delay_us_(0),
next_process_time_us_(clock_->TimeInMicroseconds()),
last_log_time_us_(clock_->TimeInMicroseconds()) {}
FakeNetworkPipe::FakeNetworkPipe(Clock* clock,
const FakeNetworkPipe::Config& config,
Transport* transport)
: clock_(clock),
network_simulation_(absl::make_unique<SimulatedNetwork>(config, 1)),
receiver_(nullptr),
transport_(transport),
clock_offset_ms_(0),
dropped_packets_(0),
sent_packets_(0),
total_packet_delay_us_(0),
next_process_time_us_(clock_->TimeInMicroseconds()),
last_log_time_us_(clock_->TimeInMicroseconds()) {}
FakeNetworkPipe::~FakeNetworkPipe() = default;
void FakeNetworkPipe::SetReceiver(PacketReceiver* receiver) {
rtc::CritScope crit(&config_lock_);
receiver_ = receiver;
}
bool FakeNetworkPipe::SendRtp(const uint8_t* packet,
size_t length,
const PacketOptions& options) {
RTC_DCHECK(HasTransport());
EnqueuePacket(rtc::CopyOnWriteBuffer(packet, length), options, false,
MediaType::ANY, absl::nullopt);
return true;
}
bool FakeNetworkPipe::SendRtcp(const uint8_t* packet, size_t length) {
RTC_DCHECK(HasTransport());
EnqueuePacket(rtc::CopyOnWriteBuffer(packet, length), absl::nullopt, true,
MediaType::ANY, absl::nullopt);
return true;
}
PacketReceiver::DeliveryStatus FakeNetworkPipe::DeliverPacket(
MediaType media_type,
rtc::CopyOnWriteBuffer packet,
const PacketTime& packet_time) {
return EnqueuePacket(std::move(packet), absl::nullopt, false, media_type,
packet_time)
? PacketReceiver::DELIVERY_OK
: PacketReceiver::DELIVERY_PACKET_ERROR;
}
void FakeNetworkPipe::SetClockOffset(int64_t offset_ms) {
rtc::CritScope crit(&config_lock_);
clock_offset_ms_ = offset_ms;
}
SimulatedNetwork::SimulatedNetwork(SimulatedNetwork::Config config,
uint64_t random_seed)
: random_(random_seed), bursting_(false) {
SetConfig(config);
}
SimulatedNetwork::~SimulatedNetwork() = default;
void FakeNetworkPipe::SetConfig(const FakeNetworkPipe::Config& config) {
network_simulation_->SetConfig(config);
}
void SimulatedNetwork::SetConfig(const SimulatedNetwork::Config& config) {
rtc::CritScope crit(&config_lock_);
config_ = config; // Shallow copy of the struct.
double prob_loss = config.loss_percent / 100.0;
if (config_.avg_burst_loss_length == -1) {
// Uniform loss
prob_loss_bursting_ = prob_loss;
prob_start_bursting_ = prob_loss;
} else {
// Lose packets according to a gilbert-elliot model.
int avg_burst_loss_length = config.avg_burst_loss_length;
int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));
RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
<< "For a total packet loss of " << config.loss_percent << "%% then"
<< " avg_burst_loss_length must be " << min_avg_burst_loss_length + 1
<< " or higher.";
prob_loss_bursting_ = (1.0 - 1.0 / avg_burst_loss_length);
prob_start_bursting_ = prob_loss / (1 - prob_loss) / avg_burst_loss_length;
}
}
bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
Config config;
{
rtc::CritScope crit(&config_lock_);
config = config_;
}
rtc::CritScope crit(&process_lock_);
if (config.queue_length_packets > 0 &&
capacity_link_.size() >= config.queue_length_packets) {
// Too many packet on the link, drop this one.
return false;
}
// Delay introduced by the link capacity.
int64_t capacity_delay_ms = 0;
if (config.link_capacity_kbps > 0) {
// Using bytes per millisecond to avoid losing precision.
const int64_t bytes_per_millisecond = config.link_capacity_kbps / 8;
// To round to the closest millisecond we add half a milliseconds worth of
// bytes to the delay calculation.
capacity_delay_ms = (packet.size + capacity_delay_error_bytes_ +
bytes_per_millisecond / 2) /
bytes_per_millisecond;
capacity_delay_error_bytes_ +=
packet.size - capacity_delay_ms * bytes_per_millisecond;
}
int64_t network_start_time_us = packet.send_time_us;
// Check if there already are packets on the link and change network start
// time forward if there is.
if (!capacity_link_.empty() &&
network_start_time_us < capacity_link_.back().arrival_time_us)
network_start_time_us = capacity_link_.back().arrival_time_us;
int64_t arrival_time_us = network_start_time_us + capacity_delay_ms * 1000;
capacity_link_.push({packet, arrival_time_us});
return true;
}
absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
if (!delay_link_.empty())
return delay_link_.begin()->arrival_time_us;
return absl::nullopt;
}
FakeNetworkPipe::StoredPacket::StoredPacket(NetworkPacket&& packet)
: packet(std::move(packet)) {}
bool FakeNetworkPipe::EnqueuePacket(rtc::CopyOnWriteBuffer packet,
absl::optional<PacketOptions> options,
bool is_rtcp,
MediaType media_type,
absl::optional<PacketTime> packet_time) {
int64_t time_now_us = clock_->TimeInMicroseconds();
rtc::CritScope crit(&process_lock_);
size_t packet_size = packet.size();
NetworkPacket net_packet(std::move(packet), time_now_us, time_now_us, options,
is_rtcp, media_type, packet_time);
packets_in_flight_.emplace_back(StoredPacket(std::move(net_packet)));
int64_t packet_id = reinterpret_cast<uint64_t>(&packets_in_flight_.back());
bool sent = network_simulation_->EnqueuePacket(
PacketInFlightInfo(packet_size, time_now_us, packet_id));
if (!sent) {
packets_in_flight_.pop_back();
++dropped_packets_;
}
return sent;
}
float FakeNetworkPipe::PercentageLoss() {
rtc::CritScope crit(&process_lock_);
if (sent_packets_ == 0)
return 0;
return static_cast<float>(dropped_packets_) /
(sent_packets_ + dropped_packets_);
}
int FakeNetworkPipe::AverageDelay() {
rtc::CritScope crit(&process_lock_);
if (sent_packets_ == 0)
return 0;
return static_cast<int>(total_packet_delay_us_ /
(1000 * static_cast<int64_t>(sent_packets_)));
}
size_t FakeNetworkPipe::DroppedPackets() {
rtc::CritScope crit(&process_lock_);
return dropped_packets_;
}
size_t FakeNetworkPipe::SentPackets() {
rtc::CritScope crit(&process_lock_);
return sent_packets_;
}
std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
int64_t receive_time_us) {
int64_t time_now_us = receive_time_us;
Config config;
double prob_loss_bursting;
double prob_start_bursting;
{
rtc::CritScope crit(&config_lock_);
config = config_;
prob_loss_bursting = prob_loss_bursting_;
prob_start_bursting = prob_start_bursting_;
}
{
rtc::CritScope crit(&process_lock_);
// Check the capacity link first.
if (!capacity_link_.empty()) {
int64_t last_arrival_time_us =
delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us;
bool needs_sort = false;
while (!capacity_link_.empty() &&
time_now_us >= capacity_link_.front().arrival_time_us) {
// Time to get this packet.
PacketInfo packet = std::move(capacity_link_.front());
capacity_link_.pop();
// Drop packets at an average rate of |config_.loss_percent| with
// and average loss burst length of |config_.avg_burst_loss_length|.
if ((bursting_ && random_.Rand<double>() < prob_loss_bursting) ||
(!bursting_ && random_.Rand<double>() < prob_start_bursting)) {
bursting_ = true;
continue;
} else {
bursting_ = false;
}
int64_t arrival_time_jitter_us = std::max(
random_.Gaussian(config.queue_delay_ms * 1000,
config.delay_standard_deviation_ms * 1000),
0.0);
// If reordering is not allowed then adjust arrival_time_jitter
// to make sure all packets are sent in order.
if (!config.allow_reordering && !delay_link_.empty() &&
packet.arrival_time_us + arrival_time_jitter_us <
last_arrival_time_us) {
arrival_time_jitter_us =
last_arrival_time_us - packet.arrival_time_us;
}
packet.arrival_time_us += arrival_time_jitter_us;
if (packet.arrival_time_us >= last_arrival_time_us) {
last_arrival_time_us = packet.arrival_time_us;
} else {
needs_sort = true;
}
delay_link_.emplace_back(std::move(packet));
}
if (needs_sort) {
// Packet(s) arrived out of order, make sure list is sorted.
std::sort(delay_link_.begin(), delay_link_.end(),
[](const PacketInfo& p1, const PacketInfo& p2) {
return p1.arrival_time_us < p2.arrival_time_us;
});
}
}
std::vector<PacketDeliveryInfo> packets_to_deliver;
// Check the extra delay queue.
while (!delay_link_.empty() &&
time_now_us >= delay_link_.front().arrival_time_us) {
PacketInfo packet_info = delay_link_.front();
packets_to_deliver.emplace_back(
PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us));
delay_link_.pop_front();
}
return packets_to_deliver;
}
}
void FakeNetworkPipe::Process() {
int64_t time_now_us = clock_->TimeInMicroseconds();
std::queue<NetworkPacket> packets_to_deliver;
{
rtc::CritScope crit(&process_lock_);
if (time_now_us - last_log_time_us_ > kLogIntervalMs * 1000) {
int64_t queueing_delay_us = 0;
if (!packets_in_flight_.empty())
queueing_delay_us =
time_now_us - packets_in_flight_.front().packet.send_time();
RTC_LOG(LS_INFO) << "Network queue: " << queueing_delay_us / 1000
<< " ms.";
last_log_time_us_ = time_now_us;
}
std::vector<PacketDeliveryInfo> delivery_infos =
network_simulation_->DequeueDeliverablePackets(time_now_us);
for (auto& delivery_info : delivery_infos) {
// In the common case where no reordering happens, find will return early
// as the first packet will be a match.
auto packet_it =
std::find_if(packets_in_flight_.begin(), packets_in_flight_.end(),
[&delivery_info](StoredPacket& packet_ref) {
return reinterpret_cast<uint64_t>(&packet_ref) ==
delivery_info.packet_id;
});
// Check that the packet is in the deque of packets in flight.
RTC_CHECK(packet_it != packets_in_flight_.end());
// Check that the packet is not already removed.
RTC_DCHECK(!packet_it->removed);
NetworkPacket packet = std::move(packet_it->packet);
packet_it->removed = true;
// Cleanup of removed packets at the beginning of the deque.
while (!packets_in_flight_.empty() &&
packets_in_flight_.front().removed) {
packets_in_flight_.pop_front();
}
if (delivery_info.receive_time_us != PacketDeliveryInfo::kNotReceived) {
int64_t added_delay_us =
delivery_info.receive_time_us - packet.send_time();
packet.IncrementArrivalTime(added_delay_us);
packets_to_deliver.emplace(std::move(packet));
// |time_now_us| might be later than when the packet should have
// arrived, due to NetworkProcess being called too late. For stats, use
// the time it should have been on the link.
total_packet_delay_us_ += added_delay_us;
}
}
sent_packets_ += packets_to_deliver.size();
}
rtc::CritScope crit(&config_lock_);
while (!packets_to_deliver.empty()) {
NetworkPacket packet = std::move(packets_to_deliver.front());
packets_to_deliver.pop();
DeliverPacket(&packet);
}
absl::optional<int64_t> delivery_us =
network_simulation_->NextDeliveryTimeUs();
next_process_time_us_ = delivery_us
? *delivery_us
: time_now_us + kDefaultProcessIntervalMs * 1000;
}
void FakeNetworkPipe::DeliverPacket(NetworkPacket* packet) {
if (transport_) {
RTC_DCHECK(!receiver_);
if (packet->is_rtcp()) {
transport_->SendRtcp(packet->data(), packet->data_length());
} else {
transport_->SendRtp(packet->data(), packet->data_length(),
packet->packet_options());
}
} else if (receiver_) {
PacketTime packet_time = packet->packet_time();
if (packet_time.timestamp != -1) {
int64_t queue_time_us = packet->arrival_time() - packet->send_time();
RTC_CHECK(queue_time_us >= 0);
packet_time.timestamp += queue_time_us;
packet_time.timestamp += (clock_offset_ms_ * 1000);
}
receiver_->DeliverPacket(packet->media_type(),
std::move(*packet->raw_packet()), packet_time);
}
}
int64_t FakeNetworkPipe::TimeUntilNextProcess() {
rtc::CritScope crit(&process_lock_);
int64_t delay_us = next_process_time_us_ - clock_->TimeInMicroseconds();
return std::max<int64_t>((delay_us + 500) / 1000, 0);
}
bool FakeNetworkPipe::HasTransport() const {
rtc::CritScope crit(&config_lock_);
return transport_ != nullptr;
}
bool FakeNetworkPipe::HasReceiver() const {
rtc::CritScope crit(&config_lock_);
return receiver_ != nullptr;
}
void FakeNetworkPipe::DeliverPacketWithLock(NetworkPacket* packet) {
rtc::CritScope crit(&config_lock_);
DeliverPacket(packet);
}
void FakeNetworkPipe::ResetStats() {
rtc::CritScope crit(&process_lock_);
dropped_packets_ = 0;
sent_packets_ = 0;
total_packet_delay_us_ = 0;
}
void FakeNetworkPipe::AddToPacketDropCount() {
rtc::CritScope crit(&process_lock_);
++dropped_packets_;
}
void FakeNetworkPipe::AddToPacketSentCount(int count) {
rtc::CritScope crit(&process_lock_);
sent_packets_ += count;
}
void FakeNetworkPipe::AddToTotalDelay(int delay_us) {
rtc::CritScope crit(&process_lock_);
total_packet_delay_us_ += delay_us;
}
int64_t FakeNetworkPipe::GetTimeInMicroseconds() const {
return clock_->TimeInMicroseconds();
}
bool FakeNetworkPipe::ShouldProcess(int64_t time_now_us) const {
return time_now_us >= next_process_time_us_;
}
void FakeNetworkPipe::SetTimeToNextProcess(int64_t skip_us) {
next_process_time_us_ += skip_us;
}
} // namespace webrtc