| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h" |
| |
| #include <math.h> |
| #include <vector> |
| |
| #include "webrtc/base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| constexpr float kSaturationLeakageFactor = 10.f; |
| constexpr size_t kSaturationLeakageBlocks = 10; |
| |
| // Estimates the residual echo power when there is no detection correlation |
| // between the render and capture signals. |
| void InfiniteErlPowerEstimate( |
| size_t active_render_counter, |
| size_t blocks_since_last_saturation, |
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| if (active_render_counter > 5 * 250) { |
| // After an amount of active render samples for which an echo should have |
| // been detected in the capture signal if the ERL was not infinite, set the |
| // residual echo to 0. |
| R2->fill(0.f); |
| } else { |
| // Before certainty has been reached about the presence of echo, use the |
| // fallback echo power estimate as the residual echo estimate. Add a leakage |
| // factor when there is saturation. |
| std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin()); |
| if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| std::for_each(R2->begin(), R2->end(), |
| [](float& a) { a *= kSaturationLeakageFactor; }); |
| } |
| } |
| } |
| |
| // Estimates the echo power in an half-duplex manner. |
| void HalfDuplexPowerEstimate(bool active_render, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| // Set the residual echo power to the power of the capture signal. |
| if (active_render) { |
| std::copy(Y2.begin(), Y2.end(), R2->begin()); |
| } else { |
| R2->fill(0.f); |
| } |
| } |
| |
| // Estimates the residual echo power based on gains. |
| void GainBasedPowerEstimate( |
| size_t external_delay, |
| const FftBuffer& X_buffer, |
| size_t blocks_since_last_saturation, |
| const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| const auto& X2 = X_buffer.Spectrum(external_delay); |
| |
| // Base the residual echo power on gain of the linear echo path estimate if |
| // that is reliable, otherwise use the fallback echo path estimate. Add a |
| // leakage factor when there is saturation. |
| for (size_t k = 0; k < R2->size(); ++k) { |
| (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] |
| : S2_fallback[k]; |
| } |
| if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| std::for_each(R2->begin(), R2->end(), |
| [](float& a) { a *= kSaturationLeakageFactor; }); |
| } |
| } |
| |
| // Estimates the residual echo power based on the linear echo path. |
| void ErleBasedPowerEstimate( |
| bool headset_detected, |
| const FftBuffer& X_buffer, |
| bool using_subtractor_output, |
| size_t linear_filter_based_delay, |
| size_t blocks_since_last_saturation, |
| bool poorly_aligned_filter, |
| const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| const std::array<float, kFftLengthBy2Plus1>& erle, |
| const std::array<float, kFftLengthBy2Plus1>& erl, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| // Residual echo power after saturation. |
| if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| for (size_t k = 0; k < R2->size(); ++k) { |
| (*R2)[k] = kSaturationLeakageFactor * |
| (bands_with_reliable_filter[k] && using_subtractor_output |
| ? S2_linear[k] |
| : std::min(S2_fallback[k], Y2[k])); |
| } |
| return; |
| } |
| |
| // Residual echo power when a headset is used. |
| if (headset_detected) { |
| const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
| for (size_t k = 0; k < R2->size(); ++k) { |
| RTC_DCHECK_LT(0.f, erle[k]); |
| (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| ? S2_linear[k] / erle[k] |
| : std::min(S2_fallback[k], Y2[k]); |
| (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]); |
| } |
| return; |
| } |
| |
| // Residual echo power when the adaptive filter is poorly aligned. |
| if (poorly_aligned_filter) { |
| for (size_t k = 0; k < R2->size(); ++k) { |
| (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| ? S2_linear[k] |
| : std::min(S2_fallback[k], Y2[k]); |
| } |
| return; |
| } |
| |
| // Residual echo power when there is no recent saturation, no headset detected |
| // and when the adaptive filter is well aligned. |
| for (size_t k = 0; k < R2->size(); ++k) { |
| RTC_DCHECK_LT(0.f, erle[k]); |
| const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
| (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| ? S2_linear[k] / erle[k] |
| : std::min(echo_path_gain[k] * X2[k], Y2[k]); |
| } |
| } |
| |
| } // namespace |
| |
| ResidualEchoEstimator::ResidualEchoEstimator() { |
| echo_path_gain_.fill(0.f); |
| } |
| |
| ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| |
| void ResidualEchoEstimator::Estimate( |
| bool using_subtractor_output, |
| const AecState& aec_state, |
| const FftBuffer& X_buffer, |
| const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
| const std::array<float, kFftLengthBy2Plus1>& E2_main, |
| const std::array<float, kFftLengthBy2Plus1>& E2_shadow, |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| RTC_DCHECK(R2); |
| const rtc::Optional<size_t>& linear_filter_based_delay = |
| aec_state.FilterDelay(); |
| |
| // Update the echo path gain. |
| if (linear_filter_based_delay) { |
| std::copy(H2[*linear_filter_based_delay].begin(), |
| H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); |
| } |
| |
| // Counts the blocks since saturation. |
| if (aec_state.SaturatedCapture()) { |
| blocks_since_last_saturation_ = 0; |
| } else { |
| ++blocks_since_last_saturation_; |
| } |
| |
| // Counts the number of active render blocks that are in a row. |
| if (aec_state.ActiveRender()) { |
| ++active_render_counter_; |
| } |
| |
| const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); |
| |
| if (aec_state.UsableLinearEstimate()) { |
| // Residual echo power estimation when the adaptive filter is reliable. |
| RTC_DCHECK(linear_filter_based_delay); |
| ErleBasedPowerEstimate( |
| aec_state.HeadsetDetected(), X_buffer, using_subtractor_output, |
| *linear_filter_based_delay, blocks_since_last_saturation_, |
| aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter, |
| echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(), |
| aec_state.Erl(), R2); |
| } else if (aec_state.ModelBasedAecFeasible()) { |
| // Residual echo power when the adaptive filter is not reliable but still an |
| // external echo path delay is provided (and hence can be estimated). |
| RTC_DCHECK(aec_state.ExternalDelay()); |
| GainBasedPowerEstimate( |
| *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, |
| bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2); |
| } else if (aec_state.EchoLeakageDetected()) { |
| // Residual echo power when an external residual echo detection algorithm |
| // has deemed the echo canceller to leak echoes. |
| HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); |
| } else { |
| // Residual echo power when none of the other cases are fulfilled. |
| InfiniteErlPowerEstimate(active_render_counter_, |
| blocks_since_last_saturation_, S2_fallback, R2); |
| } |
| } |
| |
| } // namespace webrtc |