|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Contains the API functions for the AEC. | 
|  | */ | 
|  | #include "modules/audio_processing/aec/echo_cancellation.h" | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | extern "C" { | 
|  | #include "common_audio/ring_buffer.h" | 
|  | #include "common_audio/signal_processing/include/signal_processing_library.h" | 
|  | } | 
|  | #include "modules/audio_processing/aec/aec_core.h" | 
|  | #include "modules/audio_processing/aec/aec_resampler.h" | 
|  | #include "modules/audio_processing/logging/apm_data_dumper.h" | 
|  | #include "typedefs.h"  // NOLINT(build/include) | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | Aec::Aec() = default; | 
|  | Aec::~Aec() = default; | 
|  |  | 
|  | // Measured delays [ms] | 
|  | // Device                Chrome  GTP | 
|  | // MacBook Air           10 | 
|  | // MacBook Retina        10      100 | 
|  | // MacPro                30? | 
|  | // | 
|  | // Win7 Desktop          70      80? | 
|  | // Win7 T430s            110 | 
|  | // Win8 T420s            70 | 
|  | // | 
|  | // Daisy                 50 | 
|  | // Pixel (w/ preproc?)           240 | 
|  | // Pixel (w/o preproc?)  110     110 | 
|  |  | 
|  | // The extended filter mode gives us the flexibility to ignore the system's | 
|  | // reported delays. We do this for platforms which we believe provide results | 
|  | // which are incompatible with the AEC's expectations. Based on measurements | 
|  | // (some provided above) we set a conservative (i.e. lower than measured) | 
|  | // fixed delay. | 
|  | // | 
|  | // WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode| | 
|  | // is enabled. See the note along with |DelayCorrection| in | 
|  | // echo_cancellation_impl.h for more details on the mode. | 
|  | // | 
|  | // Justification: | 
|  | // Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays | 
|  | // havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms | 
|  | // and then compensate by rewinding by 10 ms (in wideband) through | 
|  | // kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind | 
|  | // values, but fortunately this is sufficient. | 
|  | // | 
|  | // Chromium/Linux(ChromeOS): The values we get on this platform don't correspond | 
|  | // well to reality. The variance doesn't match the AEC's buffer changes, and the | 
|  | // bulk values tend to be too low. However, the range across different hardware | 
|  | // appears to be too large to choose a single value. | 
|  | // | 
|  | // GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values. | 
|  | #if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC) | 
|  | #define WEBRTC_UNTRUSTED_DELAY | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC) | 
|  | static const int kDelayDiffOffsetSamples = -160; | 
|  | #else | 
|  | // Not enabled for now. | 
|  | static const int kDelayDiffOffsetSamples = 0; | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_MAC) | 
|  | static const int kFixedDelayMs = 20; | 
|  | #else | 
|  | static const int kFixedDelayMs = 50; | 
|  | #endif | 
|  | #if !defined(WEBRTC_UNTRUSTED_DELAY) | 
|  | static const int kMinTrustedDelayMs = 20; | 
|  | #endif | 
|  | static const int kMaxTrustedDelayMs = 500; | 
|  |  | 
|  | // Maximum length of resampled signal. Must be an integer multiple of frames | 
|  | // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN | 
|  | // The factor of 2 handles wb, and the + 1 is as a safety margin | 
|  | // TODO(bjornv): Replace with kResamplerBufferSize | 
|  | #define MAX_RESAMP_LEN (5 * FRAME_LEN) | 
|  |  | 
|  | static const int kMaxBufSizeStart = 62;  // In partitions | 
|  | static const int sampMsNb = 8;           // samples per ms in nb | 
|  | static const int initCheck = 42; | 
|  |  | 
|  | int Aec::instance_count = 0; | 
|  |  | 
|  | // Estimates delay to set the position of the far-end buffer read pointer | 
|  | // (controlled by knownDelay) | 
|  | static void EstBufDelayNormal(Aec* aecInst); | 
|  | static void EstBufDelayExtended(Aec* aecInst); | 
|  | static int ProcessNormal(Aec* aecInst, | 
|  | const float* const* nearend, | 
|  | size_t num_bands, | 
|  | float* const* out, | 
|  | size_t num_samples, | 
|  | int16_t reported_delay_ms, | 
|  | int32_t skew); | 
|  | static void ProcessExtended(Aec* aecInst, | 
|  | const float* const* nearend, | 
|  | size_t num_bands, | 
|  | float* const* out, | 
|  | size_t num_samples, | 
|  | int16_t reported_delay_ms, | 
|  | int32_t skew); | 
|  |  | 
|  | void* WebRtcAec_Create() { | 
|  | Aec* aecpc = new Aec(); | 
|  |  | 
|  | if (!aecpc) { | 
|  | return NULL; | 
|  | } | 
|  | aecpc->data_dumper.reset(new ApmDataDumper(aecpc->instance_count)); | 
|  |  | 
|  | aecpc->aec = WebRtcAec_CreateAec(aecpc->instance_count); | 
|  | if (!aecpc->aec) { | 
|  | WebRtcAec_Free(aecpc); | 
|  | return NULL; | 
|  | } | 
|  | aecpc->resampler = WebRtcAec_CreateResampler(); | 
|  | if (!aecpc->resampler) { | 
|  | WebRtcAec_Free(aecpc); | 
|  | return NULL; | 
|  | } | 
|  | // Create far-end pre-buffer. The buffer size has to be large enough for | 
|  | // largest possible drift compensation (kResamplerBufferSize) + "almost" an | 
|  | // FFT buffer (PART_LEN2 - 1). | 
|  | aecpc->far_pre_buf = | 
|  | WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float)); | 
|  | if (!aecpc->far_pre_buf) { | 
|  | WebRtcAec_Free(aecpc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | aecpc->initFlag = 0; | 
|  |  | 
|  | aecpc->instance_count++; | 
|  | return aecpc; | 
|  | } | 
|  |  | 
|  | void WebRtcAec_Free(void* aecInst) { | 
|  | Aec* aecpc = reinterpret_cast<Aec*>(aecInst); | 
|  |  | 
|  | if (aecpc == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | WebRtc_FreeBuffer(aecpc->far_pre_buf); | 
|  |  | 
|  | WebRtcAec_FreeAec(aecpc->aec); | 
|  | WebRtcAec_FreeResampler(aecpc->resampler); | 
|  | delete aecpc; | 
|  | } | 
|  |  | 
|  | int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) { | 
|  | Aec* aecpc = reinterpret_cast<Aec*>(aecInst); | 
|  | aecpc->data_dumper->InitiateNewSetOfRecordings(); | 
|  | AecConfig aecConfig; | 
|  |  | 
|  | if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000 && | 
|  | sampFreq != 48000) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  | aecpc->sampFreq = sampFreq; | 
|  |  | 
|  | if (scSampFreq < 1 || scSampFreq > 96000) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  | aecpc->scSampFreq = scSampFreq; | 
|  |  | 
|  | // Initialize echo canceller core | 
|  | if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { | 
|  | return AEC_UNSPECIFIED_ERROR; | 
|  | } | 
|  |  | 
|  | if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { | 
|  | return AEC_UNSPECIFIED_ERROR; | 
|  | } | 
|  |  | 
|  | WebRtc_InitBuffer(aecpc->far_pre_buf); | 
|  | WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);  // Start overlap. | 
|  |  | 
|  | aecpc->initFlag = initCheck;  // indicates that initialization has been done | 
|  |  | 
|  | if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) { | 
|  | aecpc->splitSampFreq = 16000; | 
|  | } else { | 
|  | aecpc->splitSampFreq = sampFreq; | 
|  | } | 
|  |  | 
|  | aecpc->delayCtr = 0; | 
|  | aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; | 
|  | // Sampling frequency multiplier (SWB is processed as 160 frame size). | 
|  | aecpc->rate_factor = aecpc->splitSampFreq / 8000; | 
|  |  | 
|  | aecpc->sum = 0; | 
|  | aecpc->counter = 0; | 
|  | aecpc->checkBuffSize = 1; | 
|  | aecpc->firstVal = 0; | 
|  |  | 
|  | // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled, | 
|  | // but not extended_filter mode. | 
|  | aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) || | 
|  | !WebRtcAec_delay_agnostic_enabled(aecpc->aec); | 
|  | aecpc->bufSizeStart = 0; | 
|  | aecpc->checkBufSizeCtr = 0; | 
|  | aecpc->msInSndCardBuf = 0; | 
|  | aecpc->filtDelay = -1;  // -1 indicates an initialized state. | 
|  | aecpc->timeForDelayChange = 0; | 
|  | aecpc->knownDelay = 0; | 
|  | aecpc->lastDelayDiff = 0; | 
|  |  | 
|  | aecpc->skewFrCtr = 0; | 
|  | aecpc->resample = kAecFalse; | 
|  | aecpc->highSkewCtr = 0; | 
|  | aecpc->skew = 0; | 
|  |  | 
|  | aecpc->farend_started = 0; | 
|  |  | 
|  | // Default settings. | 
|  | aecConfig.nlpMode = kAecNlpModerate; | 
|  | aecConfig.skewMode = kAecFalse; | 
|  | aecConfig.metricsMode = kAecFalse; | 
|  | aecConfig.delay_logging = kAecFalse; | 
|  |  | 
|  | if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { | 
|  | return AEC_UNSPECIFIED_ERROR; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns any error that is caused when buffering the | 
|  | // far-end signal. | 
|  | int32_t WebRtcAec_GetBufferFarendError(void* aecInst, | 
|  | const float* farend, | 
|  | size_t nrOfSamples) { | 
|  | Aec* aecpc = reinterpret_cast<Aec*>(aecInst); | 
|  |  | 
|  | if (!farend) | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  |  | 
|  | if (aecpc->initFlag != initCheck) | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  |  | 
|  | // number of samples == 160 for SWB input | 
|  | if (nrOfSamples != 80 && nrOfSamples != 160) | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // only buffer L band for farend | 
|  | int32_t WebRtcAec_BufferFarend(void* aecInst, | 
|  | const float* farend, | 
|  | size_t nrOfSamples) { | 
|  | Aec* aecpc = reinterpret_cast<Aec*>(aecInst); | 
|  | size_t newNrOfSamples = nrOfSamples; | 
|  | float new_farend[MAX_RESAMP_LEN]; | 
|  | const float* farend_ptr = farend; | 
|  |  | 
|  | // Get any error caused by buffering the farend signal. | 
|  | int32_t error_code = | 
|  | WebRtcAec_GetBufferFarendError(aecInst, farend, nrOfSamples); | 
|  |  | 
|  | if (error_code != 0) | 
|  | return error_code; | 
|  |  | 
|  | if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { | 
|  | // Resample and get a new number of samples | 
|  | WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, aecpc->skew, | 
|  | new_farend, &newNrOfSamples); | 
|  | farend_ptr = new_farend; | 
|  | } | 
|  |  | 
|  | aecpc->farend_started = 1; | 
|  | WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + | 
|  | static_cast<int>(newNrOfSamples)); | 
|  |  | 
|  | // Write the time-domain data to |far_pre_buf|. | 
|  | WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples); | 
|  |  | 
|  | // TODO(minyue): reduce to |PART_LEN| samples for each buffering. | 
|  | while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { | 
|  | // We have enough data to pass to the FFT, hence read PART_LEN2 samples. | 
|  | { | 
|  | float* ptmp = NULL; | 
|  | float tmp[PART_LEN2]; | 
|  | WebRtc_ReadBuffer(aecpc->far_pre_buf, | 
|  | reinterpret_cast<void**>(&ptmp), tmp, PART_LEN2); | 
|  | WebRtcAec_BufferFarendBlock(aecpc->aec, &ptmp[PART_LEN]); | 
|  | } | 
|  |  | 
|  | // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. | 
|  | WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t WebRtcAec_Process(void* aecInst, | 
|  | const float* const* nearend, | 
|  | size_t num_bands, | 
|  | float* const* out, | 
|  | size_t nrOfSamples, | 
|  | int16_t msInSndCardBuf, | 
|  | int32_t skew) { | 
|  | Aec* aecpc = reinterpret_cast<Aec*>(aecInst); | 
|  | int32_t retVal = 0; | 
|  |  | 
|  | if (out == NULL) { | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  | } | 
|  |  | 
|  | if (aecpc->initFlag != initCheck) { | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  | } | 
|  |  | 
|  | // number of samples == 160 for SWB input | 
|  | if (nrOfSamples != 80 && nrOfSamples != 160) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  |  | 
|  | if (msInSndCardBuf < 0) { | 
|  | msInSndCardBuf = 0; | 
|  | retVal = AEC_BAD_PARAMETER_WARNING; | 
|  | } else if (msInSndCardBuf > kMaxTrustedDelayMs) { | 
|  | // The clamping is now done in ProcessExtended/Normal(). | 
|  | retVal = AEC_BAD_PARAMETER_WARNING; | 
|  | } | 
|  |  | 
|  | // This returns the value of aec->extended_filter_enabled. | 
|  | if (WebRtcAec_extended_filter_enabled(aecpc->aec)) { | 
|  | ProcessExtended(aecpc, nearend, num_bands, out, nrOfSamples, msInSndCardBuf, | 
|  | skew); | 
|  | } else { | 
|  | retVal = ProcessNormal(aecpc, nearend, num_bands, out, nrOfSamples, | 
|  | msInSndCardBuf, skew); | 
|  | } | 
|  |  | 
|  | int far_buf_size_samples = WebRtcAec_system_delay(aecpc->aec); | 
|  | aecpc->data_dumper->DumpRaw("aec_system_delay", 1, &far_buf_size_samples); | 
|  | aecpc->data_dumper->DumpRaw("aec_known_delay", 1, &aecpc->knownDelay); | 
|  |  | 
|  | return retVal; | 
|  | } | 
|  |  | 
|  | int WebRtcAec_set_config(void* handle, AecConfig config) { | 
|  | Aec* self = reinterpret_cast<Aec*>(handle); | 
|  | if (self->initFlag != initCheck) { | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  | } | 
|  |  | 
|  | if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  | self->skewMode = config.skewMode; | 
|  |  | 
|  | if (config.nlpMode != kAecNlpConservative && | 
|  | config.nlpMode != kAecNlpModerate && | 
|  | config.nlpMode != kAecNlpAggressive) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  |  | 
|  | if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  |  | 
|  | if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { | 
|  | return AEC_BAD_PARAMETER_ERROR; | 
|  | } | 
|  |  | 
|  | WebRtcAec_SetConfigCore(self->aec, config.nlpMode, config.metricsMode, | 
|  | config.delay_logging); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAec_get_echo_status(void* handle, int* status) { | 
|  | Aec* self = reinterpret_cast<Aec*>(handle); | 
|  | if (status == NULL) { | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  | } | 
|  | if (self->initFlag != initCheck) { | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  | } | 
|  |  | 
|  | *status = WebRtcAec_echo_state(self->aec); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) { | 
|  | const float kUpWeight = 0.7f; | 
|  | float dtmp; | 
|  | int stmp; | 
|  | Aec* self = reinterpret_cast<Aec*>(handle); | 
|  | Stats erl; | 
|  | Stats erle; | 
|  | Stats a_nlp; | 
|  |  | 
|  | if (handle == NULL) { | 
|  | return -1; | 
|  | } | 
|  | if (metrics == NULL) { | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  | } | 
|  | if (self->initFlag != initCheck) { | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  | } | 
|  |  | 
|  | WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp, | 
|  | &metrics->divergent_filter_fraction); | 
|  |  | 
|  | // ERL | 
|  | metrics->erl.instant = static_cast<int>(erl.instant); | 
|  |  | 
|  | if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) { | 
|  | // Use a mix between regular average and upper part average. | 
|  | dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average; | 
|  | metrics->erl.average = static_cast<int>(dtmp); | 
|  | } else { | 
|  | metrics->erl.average = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | metrics->erl.max = static_cast<int>(erl.max); | 
|  |  | 
|  | if (erl.min < (kOffsetLevel * (-1))) { | 
|  | metrics->erl.min = static_cast<int>(erl.min); | 
|  | } else { | 
|  | metrics->erl.min = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | // ERLE | 
|  | metrics->erle.instant = static_cast<int>(erle.instant); | 
|  |  | 
|  | if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) { | 
|  | // Use a mix between regular average and upper part average. | 
|  | dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average; | 
|  | metrics->erle.average = static_cast<int>(dtmp); | 
|  | } else { | 
|  | metrics->erle.average = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | metrics->erle.max = static_cast<int>(erle.max); | 
|  |  | 
|  | if (erle.min < (kOffsetLevel * (-1))) { | 
|  | metrics->erle.min = static_cast<int>(erle.min); | 
|  | } else { | 
|  | metrics->erle.min = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | // RERL | 
|  | if ((metrics->erl.average > kOffsetLevel) && | 
|  | (metrics->erle.average > kOffsetLevel)) { | 
|  | stmp = metrics->erl.average + metrics->erle.average; | 
|  | } else { | 
|  | stmp = kOffsetLevel; | 
|  | } | 
|  | metrics->rerl.average = stmp; | 
|  |  | 
|  | // No other statistics needed, but returned for completeness. | 
|  | metrics->rerl.instant = stmp; | 
|  | metrics->rerl.max = stmp; | 
|  | metrics->rerl.min = stmp; | 
|  |  | 
|  | // A_NLP | 
|  | metrics->aNlp.instant = static_cast<int>(a_nlp.instant); | 
|  |  | 
|  | if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) { | 
|  | // Use a mix between regular average and upper part average. | 
|  | dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average; | 
|  | metrics->aNlp.average = static_cast<int>(dtmp); | 
|  | } else { | 
|  | metrics->aNlp.average = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | metrics->aNlp.max = static_cast<int>(a_nlp.max); | 
|  |  | 
|  | if (a_nlp.min < (kOffsetLevel * (-1))) { | 
|  | metrics->aNlp.min = static_cast<int>(a_nlp.min); | 
|  | } else { | 
|  | metrics->aNlp.min = kOffsetLevel; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAec_GetDelayMetrics(void* handle, | 
|  | int* median, | 
|  | int* std, | 
|  | float* fraction_poor_delays) { | 
|  | Aec* self = reinterpret_cast<Aec*>(handle); | 
|  | if (median == NULL) { | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  | } | 
|  | if (std == NULL) { | 
|  | return AEC_NULL_POINTER_ERROR; | 
|  | } | 
|  | if (self->initFlag != initCheck) { | 
|  | return AEC_UNINITIALIZED_ERROR; | 
|  | } | 
|  | if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std, | 
|  | fraction_poor_delays) == -1) { | 
|  | // Logging disabled. | 
|  | return AEC_UNSUPPORTED_FUNCTION_ERROR; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | AecCore* WebRtcAec_aec_core(void* handle) { | 
|  | if (!handle) { | 
|  | return NULL; | 
|  | } | 
|  | return reinterpret_cast<Aec*>(handle)->aec; | 
|  | } | 
|  |  | 
|  | static int ProcessNormal(Aec* aecInst, | 
|  | const float* const* nearend, | 
|  | size_t num_bands, | 
|  | float* const* out, | 
|  | size_t num_samples, | 
|  | int16_t reported_delay_ms, | 
|  | int32_t skew) { | 
|  | int retVal = 0; | 
|  | size_t i; | 
|  | size_t nBlocks10ms; | 
|  | // Limit resampling to doubling/halving of signal | 
|  | const float minSkewEst = -0.5f; | 
|  | const float maxSkewEst = 1.0f; | 
|  |  | 
|  | reported_delay_ms = | 
|  | reported_delay_ms > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : | 
|  | reported_delay_ms; | 
|  | // TODO(andrew): we need to investigate if this +10 is really wanted. | 
|  | reported_delay_ms += 10; | 
|  | aecInst->msInSndCardBuf = reported_delay_ms; | 
|  |  | 
|  | if (aecInst->skewMode == kAecTrue) { | 
|  | if (aecInst->skewFrCtr < 25) { | 
|  | aecInst->skewFrCtr++; | 
|  | } else { | 
|  | retVal = WebRtcAec_GetSkew(aecInst->resampler, skew, &aecInst->skew); | 
|  | if (retVal == -1) { | 
|  | aecInst->skew = 0; | 
|  | retVal = AEC_BAD_PARAMETER_WARNING; | 
|  | } | 
|  |  | 
|  | aecInst->skew /= aecInst->sampFactor * num_samples; | 
|  |  | 
|  | if (aecInst->skew < 1.0e-3 && aecInst->skew > -1.0e-3) { | 
|  | aecInst->resample = kAecFalse; | 
|  | } else { | 
|  | aecInst->resample = kAecTrue; | 
|  | } | 
|  |  | 
|  | if (aecInst->skew < minSkewEst) { | 
|  | aecInst->skew = minSkewEst; | 
|  | } else if (aecInst->skew > maxSkewEst) { | 
|  | aecInst->skew = maxSkewEst; | 
|  | } | 
|  |  | 
|  | aecInst->data_dumper->DumpRaw("aec_skew", 1, &aecInst->skew); | 
|  | } | 
|  | } | 
|  |  | 
|  | nBlocks10ms = num_samples / (FRAME_LEN * aecInst->rate_factor); | 
|  |  | 
|  | if (aecInst->startup_phase) { | 
|  | for (i = 0; i < num_bands; ++i) { | 
|  | // Only needed if they don't already point to the same place. | 
|  | if (nearend[i] != out[i]) { | 
|  | memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * num_samples); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The AEC is in the start up mode | 
|  | // AEC is disabled until the system delay is OK | 
|  |  | 
|  | // Mechanism to ensure that the system delay is reasonably stable. | 
|  | if (aecInst->checkBuffSize) { | 
|  | aecInst->checkBufSizeCtr++; | 
|  | // Before we fill up the far-end buffer we require the system delay | 
|  | // to be stable (+/-8 ms) compared to the first value. This | 
|  | // comparison is made during the following 6 consecutive 10 ms | 
|  | // blocks. If it seems to be stable then we start to fill up the | 
|  | // far-end buffer. | 
|  | if (aecInst->counter == 0) { | 
|  | aecInst->firstVal = aecInst->msInSndCardBuf; | 
|  | aecInst->sum = 0; | 
|  | } | 
|  |  | 
|  | if (abs(aecInst->firstVal - aecInst->msInSndCardBuf) < | 
|  | WEBRTC_SPL_MAX(0.2 * aecInst->msInSndCardBuf, sampMsNb)) { | 
|  | aecInst->sum += aecInst->msInSndCardBuf; | 
|  | aecInst->counter++; | 
|  | } else { | 
|  | aecInst->counter = 0; | 
|  | } | 
|  |  | 
|  | if (aecInst->counter * nBlocks10ms >= 6) { | 
|  | // The far-end buffer size is determined in partitions of | 
|  | // PART_LEN samples. Use 75% of the average value of the system | 
|  | // delay as buffer size to start with. | 
|  | aecInst->bufSizeStart = | 
|  | WEBRTC_SPL_MIN((3 * aecInst->sum * aecInst->rate_factor * 8) / | 
|  | (4 * aecInst->counter * PART_LEN), | 
|  | kMaxBufSizeStart); | 
|  | // Buffer size has now been determined. | 
|  | aecInst->checkBuffSize = 0; | 
|  | } | 
|  |  | 
|  | if (aecInst->checkBufSizeCtr * nBlocks10ms > 50) { | 
|  | // For really bad systems, don't disable the echo canceller for | 
|  | // more than 0.5 sec. | 
|  | aecInst->bufSizeStart = WEBRTC_SPL_MIN( | 
|  | (aecInst->msInSndCardBuf * aecInst->rate_factor * 3) / 40, | 
|  | kMaxBufSizeStart); | 
|  | aecInst->checkBuffSize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If |checkBuffSize| changed in the if-statement above. | 
|  | if (!aecInst->checkBuffSize) { | 
|  | // The system delay is now reasonably stable (or has been unstable | 
|  | // for too long). When the far-end buffer is filled with | 
|  | // approximately the same amount of data as reported by the system | 
|  | // we end the startup phase. | 
|  | int overhead_elements = | 
|  | WebRtcAec_system_delay(aecInst->aec) / PART_LEN - | 
|  | aecInst->bufSizeStart; | 
|  | if (overhead_elements == 0) { | 
|  | // Enable the AEC | 
|  | aecInst->startup_phase = 0; | 
|  | } else if (overhead_elements > 0) { | 
|  | // TODO(bjornv): Do we need a check on how much we actually | 
|  | // moved the read pointer? It should always be possible to move | 
|  | // the pointer |overhead_elements| since we have only added data | 
|  | // to the buffer and no delay compensation nor AEC processing | 
|  | // has been done. | 
|  | WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec, | 
|  | overhead_elements); | 
|  |  | 
|  | // Enable the AEC | 
|  | aecInst->startup_phase = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // AEC is enabled. | 
|  | EstBufDelayNormal(aecInst); | 
|  |  | 
|  | // Call the AEC. | 
|  | // TODO(bjornv): Re-structure such that we don't have to pass | 
|  | // |aecInst->knownDelay| as input. Change name to something like | 
|  | // |system_buffer_diff|. | 
|  | WebRtcAec_ProcessFrames(aecInst->aec, nearend, num_bands, num_samples, | 
|  | aecInst->knownDelay, out); | 
|  | } | 
|  |  | 
|  | return retVal; | 
|  | } | 
|  |  | 
|  | static void ProcessExtended(Aec* self, | 
|  | const float* const* near, | 
|  | size_t num_bands, | 
|  | float* const* out, | 
|  | size_t num_samples, | 
|  | int16_t reported_delay_ms, | 
|  | int32_t skew) { | 
|  | size_t i; | 
|  | const int delay_diff_offset = kDelayDiffOffsetSamples; | 
|  | RTC_DCHECK(num_samples == 80 || num_samples == 160); | 
|  | #if defined(WEBRTC_UNTRUSTED_DELAY) | 
|  | reported_delay_ms = kFixedDelayMs; | 
|  | #else | 
|  | // This is the usual mode where we trust the reported system delay values. | 
|  | // Due to the longer filter, we no longer add 10 ms to the reported delay | 
|  | // to reduce chance of non-causality. Instead we apply a minimum here to avoid | 
|  | // issues with the read pointer jumping around needlessly. | 
|  | reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs | 
|  | ? kMinTrustedDelayMs | 
|  | : reported_delay_ms; | 
|  | // If the reported delay appears to be bogus, we attempt to recover by using | 
|  | // the measured fixed delay values. We use >= here because higher layers | 
|  | // may already clamp to this maximum value, and we would otherwise not | 
|  | // detect it here. | 
|  | reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs | 
|  | ? kFixedDelayMs | 
|  | : reported_delay_ms; | 
|  | #endif | 
|  | self->msInSndCardBuf = reported_delay_ms; | 
|  |  | 
|  | if (!self->farend_started) { | 
|  | for (i = 0; i < num_bands; ++i) { | 
|  | // Only needed if they don't already point to the same place. | 
|  | if (near[i] != out[i]) { | 
|  | memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (self->startup_phase) { | 
|  | // In the extended mode, there isn't a startup "phase", just a special | 
|  | // action on the first frame. In the trusted delay case, we'll take the | 
|  | // current reported delay, unless it's less then our conservative | 
|  | // measurement. | 
|  | int startup_size_ms = | 
|  | reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms; | 
|  | #if defined(WEBRTC_ANDROID) | 
|  | int target_delay = startup_size_ms * self->rate_factor * 8; | 
|  | #else | 
|  | // To avoid putting the AEC in a non-causal state we're being slightly | 
|  | // conservative and scale by 2. On Android we use a fixed delay and | 
|  | // therefore there is no need to scale the target_delay. | 
|  | int target_delay = startup_size_ms * self->rate_factor * 8 / 2; | 
|  | #endif | 
|  | int overhead_elements = | 
|  | (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN; | 
|  | WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(self->aec, | 
|  | overhead_elements); | 
|  | self->startup_phase = 0; | 
|  | } | 
|  |  | 
|  | EstBufDelayExtended(self); | 
|  |  | 
|  | { | 
|  | // |delay_diff_offset| gives us the option to manually rewind the delay on | 
|  | // very low delay platforms which can't be expressed purely through | 
|  | // |reported_delay_ms|. | 
|  | const int adjusted_known_delay = | 
|  | WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset); | 
|  |  | 
|  | WebRtcAec_ProcessFrames(self->aec, near, num_bands, num_samples, | 
|  | adjusted_known_delay, out); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EstBufDelayNormal(Aec* aecInst) { | 
|  | int nSampSndCard = aecInst->msInSndCardBuf * sampMsNb * aecInst->rate_factor; | 
|  | int current_delay = nSampSndCard - WebRtcAec_system_delay(aecInst->aec); | 
|  | int delay_difference = 0; | 
|  |  | 
|  | // Before we proceed with the delay estimate filtering we: | 
|  | // 1) Compensate for the frame that will be read. | 
|  | // 2) Compensate for drift resampling. | 
|  | // 3) Compensate for non-causality if needed, since the estimated delay can't | 
|  | //    be negative. | 
|  |  | 
|  | // 1) Compensating for the frame(s) that will be read/processed. | 
|  | current_delay += FRAME_LEN * aecInst->rate_factor; | 
|  |  | 
|  | // 2) Account for resampling frame delay. | 
|  | if (aecInst->skewMode == kAecTrue && aecInst->resample == kAecTrue) { | 
|  | current_delay -= kResamplingDelay; | 
|  | } | 
|  |  | 
|  | // 3) Compensate for non-causality, if needed, by flushing one block. | 
|  | if (current_delay < PART_LEN) { | 
|  | current_delay += | 
|  | WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec, 1) * | 
|  | PART_LEN; | 
|  | } | 
|  |  | 
|  | // We use -1 to signal an initialized state in the "extended" implementation; | 
|  | // compensate for that. | 
|  | aecInst->filtDelay = aecInst->filtDelay < 0 ? 0 : aecInst->filtDelay; | 
|  | aecInst->filtDelay = | 
|  | WEBRTC_SPL_MAX(0, static_cast<int16_t>(0.8 * | 
|  | aecInst->filtDelay + | 
|  | 0.2 * current_delay)); | 
|  |  | 
|  | delay_difference = aecInst->filtDelay - aecInst->knownDelay; | 
|  | if (delay_difference > 224) { | 
|  | if (aecInst->lastDelayDiff < 96) { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } else { | 
|  | aecInst->timeForDelayChange++; | 
|  | } | 
|  | } else if (delay_difference < 96 && aecInst->knownDelay > 0) { | 
|  | if (aecInst->lastDelayDiff > 224) { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } else { | 
|  | aecInst->timeForDelayChange++; | 
|  | } | 
|  | } else { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } | 
|  | aecInst->lastDelayDiff = delay_difference; | 
|  |  | 
|  | if (aecInst->timeForDelayChange > 25) { | 
|  | aecInst->knownDelay = WEBRTC_SPL_MAX((int)aecInst->filtDelay - 160, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EstBufDelayExtended(Aec* aecInst) { | 
|  | int reported_delay = aecInst->msInSndCardBuf * sampMsNb * | 
|  | aecInst->rate_factor; | 
|  | int current_delay = reported_delay - WebRtcAec_system_delay(aecInst->aec); | 
|  | int delay_difference = 0; | 
|  |  | 
|  | // Before we proceed with the delay estimate filtering we: | 
|  | // 1) Compensate for the frame that will be read. | 
|  | // 2) Compensate for drift resampling. | 
|  | // 3) Compensate for non-causality if needed, since the estimated delay can't | 
|  | //    be negative. | 
|  |  | 
|  | // 1) Compensating for the frame(s) that will be read/processed. | 
|  | current_delay += FRAME_LEN * aecInst->rate_factor; | 
|  |  | 
|  | // 2) Account for resampling frame delay. | 
|  | if (aecInst->skewMode == kAecTrue && aecInst->resample == kAecTrue) { | 
|  | current_delay -= kResamplingDelay; | 
|  | } | 
|  |  | 
|  | // 3) Compensate for non-causality, if needed, by flushing two blocks. | 
|  | if (current_delay < PART_LEN) { | 
|  | current_delay += | 
|  | WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec, 2) * | 
|  | PART_LEN; | 
|  | } | 
|  |  | 
|  | if (aecInst->filtDelay == -1) { | 
|  | aecInst->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay); | 
|  | } else { | 
|  | aecInst->filtDelay = WEBRTC_SPL_MAX( | 
|  | 0, static_cast<int16_t>(0.95 * aecInst->filtDelay + 0.05 * | 
|  | current_delay)); | 
|  | } | 
|  |  | 
|  | delay_difference = aecInst->filtDelay - aecInst->knownDelay; | 
|  | if (delay_difference > 384) { | 
|  | if (aecInst->lastDelayDiff < 128) { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } else { | 
|  | aecInst->timeForDelayChange++; | 
|  | } | 
|  | } else if (delay_difference < 128 && aecInst->knownDelay > 0) { | 
|  | if (aecInst->lastDelayDiff > 384) { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } else { | 
|  | aecInst->timeForDelayChange++; | 
|  | } | 
|  | } else { | 
|  | aecInst->timeForDelayChange = 0; | 
|  | } | 
|  | aecInst->lastDelayDiff = delay_difference; | 
|  |  | 
|  | if (aecInst->timeForDelayChange > 25) { | 
|  | aecInst->knownDelay = WEBRTC_SPL_MAX((int)aecInst->filtDelay - 256, 0); | 
|  | } | 
|  | } | 
|  | }  // namespace webrtc |