| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/base/internal/endian.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "absl/base/config.h" |
| |
| namespace absl { |
| namespace { |
| |
| const uint64_t kInitialNumber{0x0123456789abcdef}; |
| const uint64_t k64Value{kInitialNumber}; |
| const uint32_t k32Value{0x01234567}; |
| const uint16_t k16Value{0x0123}; |
| const int kNumValuesToTest = 1000000; |
| const int kRandomSeed = 12345; |
| |
| #ifdef ABSL_IS_BIG_ENDIAN |
| const uint64_t kInitialInNetworkOrder{kInitialNumber}; |
| const uint64_t k64ValueLE{0xefcdab8967452301}; |
| const uint32_t k32ValueLE{0x67452301}; |
| const uint16_t k16ValueLE{0x2301}; |
| const uint8_t k8ValueLE{k8Value}; |
| const uint64_t k64IValueLE{0xefcdab89674523a1}; |
| const uint32_t k32IValueLE{0x67452391}; |
| const uint16_t k16IValueLE{0x85ff}; |
| const uint8_t k8IValueLE{0xff}; |
| const uint64_t kDoubleValueLE{0x6e861bf0f9210940}; |
| const uint32_t kFloatValueLE{0xd00f4940}; |
| const uint8_t kBoolValueLE{0x1}; |
| |
| const uint64_t k64ValueBE{kInitialNumber}; |
| const uint32_t k32ValueBE{k32Value}; |
| const uint16_t k16ValueBE{k16Value}; |
| const uint8_t k8ValueBE{k8Value}; |
| const uint64_t k64IValueBE{0xa123456789abcdef}; |
| const uint32_t k32IValueBE{0x91234567}; |
| const uint16_t k16IValueBE{0xff85}; |
| const uint8_t k8IValueBE{0xff}; |
| const uint64_t kDoubleValueBE{0x400921f9f01b866e}; |
| const uint32_t kFloatValueBE{0x40490fd0}; |
| const uint8_t kBoolValueBE{0x1}; |
| #elif defined ABSL_IS_LITTLE_ENDIAN |
| const uint64_t kInitialInNetworkOrder{0xefcdab8967452301}; |
| const uint64_t k64ValueLE{kInitialNumber}; |
| const uint32_t k32ValueLE{k32Value}; |
| const uint16_t k16ValueLE{k16Value}; |
| |
| const uint64_t k64ValueBE{0xefcdab8967452301}; |
| const uint32_t k32ValueBE{0x67452301}; |
| const uint16_t k16ValueBE{0x2301}; |
| #endif |
| |
| template<typename T> |
| std::vector<T> GenerateAllValuesForType() { |
| std::vector<T> result; |
| T next = std::numeric_limits<T>::min(); |
| while (true) { |
| result.push_back(next); |
| if (next == std::numeric_limits<T>::max()) { |
| return result; |
| } |
| ++next; |
| } |
| } |
| |
| template<typename T> |
| std::vector<T> GenerateRandomIntegers(size_t numValuesToTest) { |
| std::vector<T> result; |
| std::mt19937_64 rng(kRandomSeed); |
| for (size_t i = 0; i < numValuesToTest; ++i) { |
| result.push_back(rng()); |
| } |
| return result; |
| } |
| |
| void ManualByteSwap(char* bytes, int length) { |
| if (length == 1) |
| return; |
| |
| EXPECT_EQ(0, length % 2); |
| for (int i = 0; i < length / 2; ++i) { |
| int j = (length - 1) - i; |
| using std::swap; |
| swap(bytes[i], bytes[j]); |
| } |
| } |
| |
| template<typename T> |
| inline T UnalignedLoad(const char* p) { |
| static_assert( |
| sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, |
| "Unexpected type size"); |
| |
| switch (sizeof(T)) { |
| case 1: return *reinterpret_cast<const T*>(p); |
| case 2: |
| return ABSL_INTERNAL_UNALIGNED_LOAD16(p); |
| case 4: |
| return ABSL_INTERNAL_UNALIGNED_LOAD32(p); |
| case 8: |
| return ABSL_INTERNAL_UNALIGNED_LOAD64(p); |
| default: |
| // Suppresses invalid "not all control paths return a value" on MSVC |
| return {}; |
| } |
| } |
| |
| template <typename T, typename ByteSwapper> |
| static void GBSwapHelper(const std::vector<T>& host_values_to_test, |
| const ByteSwapper& byte_swapper) { |
| // Test byte_swapper against a manual byte swap. |
| for (typename std::vector<T>::const_iterator it = host_values_to_test.begin(); |
| it != host_values_to_test.end(); ++it) { |
| T host_value = *it; |
| |
| char actual_value[sizeof(host_value)]; |
| memcpy(actual_value, &host_value, sizeof(host_value)); |
| byte_swapper(actual_value); |
| |
| char expected_value[sizeof(host_value)]; |
| memcpy(expected_value, &host_value, sizeof(host_value)); |
| ManualByteSwap(expected_value, sizeof(host_value)); |
| |
| ASSERT_EQ(0, memcmp(actual_value, expected_value, sizeof(host_value))) |
| << "Swap output for 0x" << std::hex << host_value << " does not match. " |
| << "Expected: 0x" << UnalignedLoad<T>(expected_value) << "; " |
| << "actual: 0x" << UnalignedLoad<T>(actual_value); |
| } |
| } |
| |
| void Swap16(char* bytes) { |
| ABSL_INTERNAL_UNALIGNED_STORE16( |
| bytes, gbswap_16(ABSL_INTERNAL_UNALIGNED_LOAD16(bytes))); |
| } |
| |
| void Swap32(char* bytes) { |
| ABSL_INTERNAL_UNALIGNED_STORE32( |
| bytes, gbswap_32(ABSL_INTERNAL_UNALIGNED_LOAD32(bytes))); |
| } |
| |
| void Swap64(char* bytes) { |
| ABSL_INTERNAL_UNALIGNED_STORE64( |
| bytes, gbswap_64(ABSL_INTERNAL_UNALIGNED_LOAD64(bytes))); |
| } |
| |
| TEST(EndianessTest, Uint16) { |
| GBSwapHelper(GenerateAllValuesForType<uint16_t>(), &Swap16); |
| } |
| |
| TEST(EndianessTest, Uint32) { |
| GBSwapHelper(GenerateRandomIntegers<uint32_t>(kNumValuesToTest), &Swap32); |
| } |
| |
| TEST(EndianessTest, Uint64) { |
| GBSwapHelper(GenerateRandomIntegers<uint64_t>(kNumValuesToTest), &Swap64); |
| } |
| |
| TEST(EndianessTest, ghtonll_gntohll) { |
| // Test that absl::ghtonl compiles correctly |
| uint32_t test = 0x01234567; |
| EXPECT_EQ(absl::gntohl(absl::ghtonl(test)), test); |
| |
| uint64_t comp = absl::ghtonll(kInitialNumber); |
| EXPECT_EQ(comp, kInitialInNetworkOrder); |
| comp = absl::gntohll(kInitialInNetworkOrder); |
| EXPECT_EQ(comp, kInitialNumber); |
| |
| // Test that htonll and ntohll are each others' inverse functions on a |
| // somewhat assorted batch of numbers. 37 is chosen to not be anything |
| // particularly nice base 2. |
| uint64_t value = 1; |
| for (int i = 0; i < 100; ++i) { |
| comp = absl::ghtonll(absl::gntohll(value)); |
| EXPECT_EQ(value, comp); |
| comp = absl::gntohll(absl::ghtonll(value)); |
| EXPECT_EQ(value, comp); |
| value *= 37; |
| } |
| } |
| |
| TEST(EndianessTest, little_endian) { |
| // Check little_endian uint16_t. |
| uint64_t comp = little_endian::FromHost16(k16Value); |
| EXPECT_EQ(comp, k16ValueLE); |
| comp = little_endian::ToHost16(k16ValueLE); |
| EXPECT_EQ(comp, k16Value); |
| |
| // Check little_endian uint32_t. |
| comp = little_endian::FromHost32(k32Value); |
| EXPECT_EQ(comp, k32ValueLE); |
| comp = little_endian::ToHost32(k32ValueLE); |
| EXPECT_EQ(comp, k32Value); |
| |
| // Check little_endian uint64_t. |
| comp = little_endian::FromHost64(k64Value); |
| EXPECT_EQ(comp, k64ValueLE); |
| comp = little_endian::ToHost64(k64ValueLE); |
| EXPECT_EQ(comp, k64Value); |
| |
| // Check little-endian Load and store functions. |
| uint16_t u16Buf; |
| uint32_t u32Buf; |
| uint64_t u64Buf; |
| |
| little_endian::Store16(&u16Buf, k16Value); |
| EXPECT_EQ(u16Buf, k16ValueLE); |
| comp = little_endian::Load16(&u16Buf); |
| EXPECT_EQ(comp, k16Value); |
| |
| little_endian::Store32(&u32Buf, k32Value); |
| EXPECT_EQ(u32Buf, k32ValueLE); |
| comp = little_endian::Load32(&u32Buf); |
| EXPECT_EQ(comp, k32Value); |
| |
| little_endian::Store64(&u64Buf, k64Value); |
| EXPECT_EQ(u64Buf, k64ValueLE); |
| comp = little_endian::Load64(&u64Buf); |
| EXPECT_EQ(comp, k64Value); |
| } |
| |
| TEST(EndianessTest, big_endian) { |
| // Check big-endian Load and store functions. |
| uint16_t u16Buf; |
| uint32_t u32Buf; |
| uint64_t u64Buf; |
| |
| unsigned char buffer[10]; |
| big_endian::Store16(&u16Buf, k16Value); |
| EXPECT_EQ(u16Buf, k16ValueBE); |
| uint64_t comp = big_endian::Load16(&u16Buf); |
| EXPECT_EQ(comp, k16Value); |
| |
| big_endian::Store32(&u32Buf, k32Value); |
| EXPECT_EQ(u32Buf, k32ValueBE); |
| comp = big_endian::Load32(&u32Buf); |
| EXPECT_EQ(comp, k32Value); |
| |
| big_endian::Store64(&u64Buf, k64Value); |
| EXPECT_EQ(u64Buf, k64ValueBE); |
| comp = big_endian::Load64(&u64Buf); |
| EXPECT_EQ(comp, k64Value); |
| |
| big_endian::Store16(buffer + 1, k16Value); |
| EXPECT_EQ(u16Buf, k16ValueBE); |
| comp = big_endian::Load16(buffer + 1); |
| EXPECT_EQ(comp, k16Value); |
| |
| big_endian::Store32(buffer + 1, k32Value); |
| EXPECT_EQ(u32Buf, k32ValueBE); |
| comp = big_endian::Load32(buffer + 1); |
| EXPECT_EQ(comp, k32Value); |
| |
| big_endian::Store64(buffer + 1, k64Value); |
| EXPECT_EQ(u64Buf, k64ValueBE); |
| comp = big_endian::Load64(buffer + 1); |
| EXPECT_EQ(comp, k64Value); |
| } |
| |
| } // namespace |
| } // namespace absl |