| // Copyright (c) 2005, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // --- |
| // Author: Sanjay Ghemawat <opensource@google.com> |
| // |
| // A data structure used by the caching malloc. It maps from page# to |
| // a pointer that contains info about that page. We use two |
| // representations: one for 32-bit addresses, and another for 64 bit |
| // addresses. Both representations provide the same interface. The |
| // first representation is implemented as a flat array, the seconds as |
| // a three-level radix tree that strips away approximately 1/3rd of |
| // the bits every time. |
| // |
| // The BITS parameter should be the number of bits required to hold |
| // a page number. E.g., with 32 bit pointers and 4K pages (i.e., |
| // page offset fits in lower 12 bits), BITS == 20. |
| |
| #ifndef TCMALLOC_PAGEMAP_H_ |
| #define TCMALLOC_PAGEMAP_H_ |
| |
| #include "config.h" |
| |
| #include <stddef.h> // for NULL, size_t |
| #include <string.h> // for memset |
| #if defined HAVE_STDINT_H |
| #include <stdint.h> |
| #elif defined HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #else |
| #include <sys/types.h> |
| #endif |
| #ifdef WIN32 |
| // TODO(jar): This is not needed when TCMalloc_PageMap1_LazyCommit has an API |
| // supporting commit and reservation of memory. |
| #include "common.h" |
| #endif |
| |
| #include "internal_logging.h" // for ASSERT |
| |
| // Single-level array |
| template <int BITS> |
| class TCMalloc_PageMap1 { |
| private: |
| static const int LENGTH = 1 << BITS; |
| |
| void** array_; |
| |
| public: |
| typedef uintptr_t Number; |
| |
| explicit TCMalloc_PageMap1(void* (*allocator)(size_t)) { |
| array_ = reinterpret_cast<void**>((*allocator)(sizeof(void*) << BITS)); |
| memset(array_, 0, sizeof(void*) << BITS); |
| } |
| |
| // Ensure that the map contains initialized entries "x .. x+n-1". |
| // Returns true if successful, false if we could not allocate memory. |
| bool Ensure(Number x, size_t n) { |
| // Nothing to do since flat array was allocated at start. All |
| // that's left is to check for overflow (that is, we don't want to |
| // ensure a number y where array_[y] would be an out-of-bounds |
| // access). |
| return n <= LENGTH - x; // an overflow-free way to do "x + n <= LENGTH" |
| } |
| |
| void PreallocateMoreMemory() {} |
| |
| // Return the current value for KEY. Returns NULL if not yet set, |
| // or if k is out of range. |
| void* get(Number k) const { |
| if ((k >> BITS) > 0) { |
| return NULL; |
| } |
| return array_[k]; |
| } |
| |
| // REQUIRES "k" is in range "[0,2^BITS-1]". |
| // REQUIRES "k" has been ensured before. |
| // |
| // Sets the value 'v' for key 'k'. |
| void set(Number k, void* v) { |
| array_[k] = v; |
| } |
| |
| // Return the first non-NULL pointer found in this map for |
| // a page number >= k. Returns NULL if no such number is found. |
| void* Next(Number k) const { |
| while (k < (1 << BITS)) { |
| if (array_[k] != NULL) return array_[k]; |
| k++; |
| } |
| return NULL; |
| } |
| }; |
| |
| #ifdef WIN32 |
| // Lazy commit, single-level array. |
| // Very similar to PageMap1, except the page map is only committed as needed. |
| // Since we don't return memory to the OS, the committed portion of the map will |
| // only grow, and we'll only be called to Ensure when we really grow the heap. |
| // We maintain a bit map to help us deduce if we've already committed a range |
| // in our map. |
| template <int BITS> |
| class TCMalloc_PageMap1_LazyCommit { |
| private: |
| // Dimension of our page map array_. |
| static const int LENGTH = 1 << BITS; |
| |
| // The page map array that sits in reserved virtual space. Pages of this |
| // array are committed as they are needed. For each page of virtual memory, |
| // we potentially have a pointer to a span instance. |
| void** array_; |
| |
| // A bit vector that allows us to deduce what pages in array_ are committed. |
| // Note that 2^3 = 8 bits per char, and hence the use of the magical "3" in |
| // the array range gives us the effective "divide by 8". |
| char committed_[sizeof(void*) << (BITS - kPageShift - 3)]; |
| |
| // Given an |index| into |array_|, find the page number in |array_| that holds |
| // that element. |
| size_t ContainingPage(size_t index) const { |
| return (index * sizeof(*array_)) >> kPageShift; |
| } |
| |
| // Find out if the given page_num index in array_ is in committed memory. |
| bool IsCommitted(size_t page_num) const { |
| return committed_[page_num >> 3] & (1 << (page_num & 0x7)); |
| } |
| |
| // Remember that the given page_num index in array_ is in committed memory. |
| void SetCommitted(size_t page_num) { |
| committed_[page_num >> 3] |= (1 << (page_num & 0x7)); |
| } |
| |
| public: |
| typedef uintptr_t Number; |
| |
| explicit TCMalloc_PageMap1_LazyCommit(void* (*allocator)(size_t)) { |
| // TODO(jar): We need a reservation function, but current API to this class |
| // only provides an allocator. |
| // Get decommitted memory. We will commit as necessary. |
| size_t size = sizeof(*array_) << BITS; |
| array_ = reinterpret_cast<void**>(VirtualAlloc( |
| NULL, size, MEM_RESERVE, PAGE_READWRITE)); |
| tcmalloc::update_metadata_system_bytes(size); |
| tcmalloc::update_metadata_unmapped_bytes(size); |
| |
| // Make sure we divided LENGTH evenly. |
| ASSERT(sizeof(committed_) * 8 == (LENGTH * sizeof(*array_)) >> kPageShift); |
| // Indicate that none of the pages of array_ have been committed yet. |
| memset(committed_, 0, sizeof(committed_)); |
| } |
| |
| // Ensure that the map contains initialized and committed entries in array_ to |
| // describe pages "x .. x+n-1". |
| // Returns true if successful, false if we could not ensure this. |
| // If we have to commit more memory in array_ (which also clears said memory), |
| // then we'll set some of the bits in committed_ to remember this fact. |
| // Only the bits of committed_ near end-points for calls to Ensure() are ever |
| // set, as the calls to Ensure() will never have overlapping ranges other than |
| // at their end-points. |
| // |
| // Example: Suppose the OS allocates memory in pages including 40...50, and |
| // later the OS allocates memory in pages 51...83. When the first allocation |
| // of 40...50 is observed, then Ensure of (39,51) will be called. The range |
| // shown in the arguments is extended so that tcmalloc can look to see if |
| // adjacent pages are part of a span that can be coaleced. Later, when pages |
| // 51...83 are allocated, Ensure() will be called with arguments (50,84), |
| // broadened again for the same reason. |
| // |
| // After the above, we would NEVER get a call such as Ensure(45,60), as that |
| // overlaps with the interior of prior ensured regions. We ONLY get an Ensure |
| // call when the OS has allocated memory, and since we NEVER give memory back |
| // to the OS, the OS can't possible allocate the same region to us twice, and |
| // can't induce an Ensure() on an interior of previous Ensure call. |
| // |
| // Also note that OS allocations are NOT guaranteed to be consecutive (there |
| // may be "holes" where code etc. uses the virtual addresses), or to appear in |
| // any order, such as lowest to highest, or vice versa (as other independent |
| // allocation systems in the process may be performing VirtualAllocations and |
| // VirtualFrees asynchronously.) |
| bool Ensure(Number x, size_t n) { |
| if (n > LENGTH - x) |
| return false; // We won't Ensure mapping for last pages in memory. |
| ASSERT(n > 0); |
| |
| // For a given page number in memory, calculate what page in array_ needs to |
| // be memory resident. Note that we really only need a few bytes in array_ |
| // for each page of virtual space we have to map, but we can only commit |
| // whole pages of array_. For instance, a 4K page of array_ has about 1k |
| // entries, and hence can map about 1K pages, or a total of about 4MB |
| // typically. As a result, it is possible that the first entry in array_, |
| // and the n'th entry in array_, will sit in the same page of array_. |
| size_t first_page = ContainingPage(x); |
| size_t last_page = ContainingPage(x + n - 1); |
| |
| // Check at each boundary, to see if we need to commit at that end. Some |
| // other neighbor may have already forced us to commit at either or both |
| // boundaries. |
| if (IsCommitted(first_page)) { |
| if (first_page == last_page) return true; |
| ++first_page; |
| if (IsCommitted(first_page)) { |
| if (first_page == last_page) return true; |
| ++first_page; |
| } |
| } |
| |
| if (IsCommitted(last_page)) { |
| if (first_page == last_page) return true; |
| --last_page; |
| if (IsCommitted(last_page)) { |
| if (first_page == last_page) return true; |
| --last_page; |
| } |
| } |
| |
| ASSERT(!IsCommitted(last_page)); |
| ASSERT(!IsCommitted(first_page)); |
| |
| void* start = reinterpret_cast<char*>(array_) + (first_page << kPageShift); |
| size_t length = (last_page - first_page + 1) << kPageShift; |
| |
| #ifndef NDEBUG |
| // Validate we are committing new sections, and hence we're not clearing any |
| // existing data. |
| MEMORY_BASIC_INFORMATION info = {0}; |
| size_t result = VirtualQuery(start, &info, sizeof(info)); |
| ASSERT(result); |
| ASSERT(0 == (info.State & MEM_COMMIT)); // It starts with uncommitted. |
| ASSERT(info.RegionSize >= length); // Entire length is uncommitted. |
| #endif |
| |
| TCMalloc_SystemCommit(start, length); |
| tcmalloc::update_metadata_unmapped_bytes(-length); |
| |
| #ifndef NDEBUG |
| result = VirtualQuery(start, &info, sizeof(info)); |
| ASSERT(result); |
| ASSERT(0 != (info.State & MEM_COMMIT)); // Now it is committed. |
| ASSERT(info.RegionSize >= length); // Entire length is committed. |
| #endif |
| |
| // As noted in the large comment/example describing this method, we will |
| // never be called with a range of pages very much inside this |first_page| |
| // to |last_page| range. |
| // As a result, we only need to set bits for each end of that range, and one |
| // page inside each end. |
| SetCommitted(first_page); |
| if (first_page < last_page) { |
| SetCommitted(last_page); |
| SetCommitted(first_page + 1); // These may be duplicates now. |
| SetCommitted(last_page - 1); |
| } |
| |
| return true; |
| } |
| |
| // This is a premature call to get all the meta-memory allocated, so as to |
| // avoid virtual space fragmentation. Since we pre-reserved all memory, we |
| // don't need to do anything here (we won't fragment virtual space). |
| void PreallocateMoreMemory() {} |
| |
| // Return the current value for KEY. Returns NULL if not yet set, |
| // or if k is out of range. |
| void* get(Number k) const { |
| if ((k >> BITS) > 0) { |
| return NULL; |
| } |
| return array_[k]; |
| } |
| |
| // REQUIRES "k" is in range "[0,2^BITS-1]". |
| // REQUIRES "k" has been ensured before. |
| // |
| // Sets the value for KEY. |
| void set(Number k, void* v) { |
| array_[k] = v; |
| } |
| // Return the first non-NULL pointer found in this map for |
| // a page number >= k. Returns NULL if no such number is found. |
| void* Next(Number k) const { |
| while (k < (1 << BITS)) { |
| if (array_[k] != NULL) return array_[k]; |
| k++; |
| } |
| return NULL; |
| } |
| }; |
| #endif // WIN32 |
| |
| |
| // Two-level radix tree |
| template <int BITS> |
| class TCMalloc_PageMap2 { |
| private: |
| // Put 32 entries in the root and (2^BITS)/32 entries in each leaf. |
| static const int ROOT_BITS = 5; |
| static const int ROOT_LENGTH = 1 << ROOT_BITS; |
| |
| static const int LEAF_BITS = BITS - ROOT_BITS; |
| static const int LEAF_LENGTH = 1 << LEAF_BITS; |
| |
| // Leaf node |
| struct Leaf { |
| void* values[LEAF_LENGTH]; |
| }; |
| |
| Leaf* root_[ROOT_LENGTH]; // Pointers to 32 child nodes |
| void* (*allocator_)(size_t); // Memory allocator |
| |
| public: |
| typedef uintptr_t Number; |
| |
| explicit TCMalloc_PageMap2(void* (*allocator)(size_t)) { |
| allocator_ = allocator; |
| memset(root_, 0, sizeof(root_)); |
| } |
| |
| void* get(Number k) const { |
| const Number i1 = k >> LEAF_BITS; |
| const Number i2 = k & (LEAF_LENGTH-1); |
| if ((k >> BITS) > 0 || root_[i1] == NULL) { |
| return NULL; |
| } |
| return root_[i1]->values[i2]; |
| } |
| |
| void set(Number k, void* v) { |
| ASSERT(k >> BITS == 0); |
| const Number i1 = k >> LEAF_BITS; |
| const Number i2 = k & (LEAF_LENGTH-1); |
| root_[i1]->values[i2] = v; |
| } |
| |
| bool Ensure(Number start, size_t n) { |
| for (Number key = start; key <= start + n - 1; ) { |
| const Number i1 = key >> LEAF_BITS; |
| |
| // Check for overflow |
| if (i1 >= ROOT_LENGTH) |
| return false; |
| |
| // Make 2nd level node if necessary |
| if (root_[i1] == NULL) { |
| Leaf* leaf = reinterpret_cast<Leaf*>((*allocator_)(sizeof(Leaf))); |
| if (leaf == NULL) return false; |
| memset(leaf, 0, sizeof(*leaf)); |
| root_[i1] = leaf; |
| } |
| |
| // Advance key past whatever is covered by this leaf node |
| key = ((key >> LEAF_BITS) + 1) << LEAF_BITS; |
| } |
| return true; |
| } |
| |
| void PreallocateMoreMemory() { |
| // Allocate enough to keep track of all possible pages |
| Ensure(0, 1 << BITS); |
| } |
| |
| void* Next(Number k) const { |
| while (k < (1 << BITS)) { |
| const Number i1 = k >> LEAF_BITS; |
| Leaf* leaf = root_[i1]; |
| if (leaf != NULL) { |
| // Scan forward in leaf |
| for (Number i2 = k & (LEAF_LENGTH - 1); i2 < LEAF_LENGTH; i2++) { |
| if (leaf->values[i2] != NULL) { |
| return leaf->values[i2]; |
| } |
| } |
| } |
| // Skip to next top-level entry |
| k = (i1 + 1) << LEAF_BITS; |
| } |
| return NULL; |
| } |
| }; |
| |
| // Three-level radix tree |
| template <int BITS> |
| class TCMalloc_PageMap3 { |
| private: |
| // How many bits should we consume at each interior level |
| static const int INTERIOR_BITS = (BITS + 2) / 3; // Round-up |
| static const int INTERIOR_LENGTH = 1 << INTERIOR_BITS; |
| |
| // How many bits should we consume at leaf level |
| static const int LEAF_BITS = BITS - 2*INTERIOR_BITS; |
| static const int LEAF_LENGTH = 1 << LEAF_BITS; |
| |
| // Interior node |
| struct Node { |
| Node* ptrs[INTERIOR_LENGTH]; |
| }; |
| |
| // Leaf node |
| struct Leaf { |
| void* values[LEAF_LENGTH]; |
| }; |
| |
| Node* root_; // Root of radix tree |
| void* (*allocator_)(size_t); // Memory allocator |
| |
| Node* NewNode() { |
| Node* result = reinterpret_cast<Node*>((*allocator_)(sizeof(Node))); |
| if (result != NULL) { |
| memset(result, 0, sizeof(*result)); |
| } |
| return result; |
| } |
| |
| public: |
| typedef uintptr_t Number; |
| |
| explicit TCMalloc_PageMap3(void* (*allocator)(size_t)) { |
| allocator_ = allocator; |
| root_ = NewNode(); |
| } |
| |
| void* get(Number k) const { |
| const Number i1 = k >> (LEAF_BITS + INTERIOR_BITS); |
| const Number i2 = (k >> LEAF_BITS) & (INTERIOR_LENGTH-1); |
| const Number i3 = k & (LEAF_LENGTH-1); |
| if ((k >> BITS) > 0 || |
| root_->ptrs[i1] == NULL || root_->ptrs[i1]->ptrs[i2] == NULL) { |
| return NULL; |
| } |
| return reinterpret_cast<Leaf*>(root_->ptrs[i1]->ptrs[i2])->values[i3]; |
| } |
| |
| void set(Number k, void* v) { |
| ASSERT(k >> BITS == 0); |
| const Number i1 = k >> (LEAF_BITS + INTERIOR_BITS); |
| const Number i2 = (k >> LEAF_BITS) & (INTERIOR_LENGTH-1); |
| const Number i3 = k & (LEAF_LENGTH-1); |
| reinterpret_cast<Leaf*>(root_->ptrs[i1]->ptrs[i2])->values[i3] = v; |
| } |
| |
| bool Ensure(Number start, size_t n) { |
| for (Number key = start; key <= start + n - 1; ) { |
| const Number i1 = key >> (LEAF_BITS + INTERIOR_BITS); |
| const Number i2 = (key >> LEAF_BITS) & (INTERIOR_LENGTH-1); |
| |
| // Check for overflow |
| if (i1 >= INTERIOR_LENGTH || i2 >= INTERIOR_LENGTH) |
| return false; |
| |
| // Make 2nd level node if necessary |
| if (root_->ptrs[i1] == NULL) { |
| Node* n = NewNode(); |
| if (n == NULL) return false; |
| root_->ptrs[i1] = n; |
| } |
| |
| // Make leaf node if necessary |
| if (root_->ptrs[i1]->ptrs[i2] == NULL) { |
| Leaf* leaf = reinterpret_cast<Leaf*>((*allocator_)(sizeof(Leaf))); |
| if (leaf == NULL) return false; |
| memset(leaf, 0, sizeof(*leaf)); |
| root_->ptrs[i1]->ptrs[i2] = reinterpret_cast<Node*>(leaf); |
| } |
| |
| // Advance key past whatever is covered by this leaf node |
| key = ((key >> LEAF_BITS) + 1) << LEAF_BITS; |
| } |
| return true; |
| } |
| |
| void PreallocateMoreMemory() { |
| } |
| |
| void* Next(Number k) const { |
| while (k < (Number(1) << BITS)) { |
| const Number i1 = k >> (LEAF_BITS + INTERIOR_BITS); |
| const Number i2 = (k >> LEAF_BITS) & (INTERIOR_LENGTH-1); |
| if (root_->ptrs[i1] == NULL) { |
| // Advance to next top-level entry |
| k = (i1 + 1) << (LEAF_BITS + INTERIOR_BITS); |
| } else { |
| Leaf* leaf = reinterpret_cast<Leaf*>(root_->ptrs[i1]->ptrs[i2]); |
| if (leaf != NULL) { |
| for (Number i3 = (k & (LEAF_LENGTH-1)); i3 < LEAF_LENGTH; i3++) { |
| if (leaf->values[i3] != NULL) { |
| return leaf->values[i3]; |
| } |
| } |
| } |
| // Advance to next interior entry |
| k = ((k >> LEAF_BITS) + 1) << LEAF_BITS; |
| } |
| } |
| return NULL; |
| } |
| }; |
| |
| #endif // TCMALLOC_PAGEMAP_H_ |