blob: f7b0c74236d6d7a3734b439792650b72776bcc8a [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/delay_based_bwe.h"
#include "modules/congestion_controller/delay_based_bwe_unittest_helper.h"
#include "modules/pacing/paced_sender.h"
#include "rtc_base/constructormagic.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kNumProbesCluster0 = 5;
constexpr int kNumProbesCluster1 = 8;
const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000);
const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000);
constexpr float kTargetUtilizationFraction = 0.95f;
} // namespace
TEST_F(LegacyDelayBasedBweTest, NoCrashEmptyFeedback) {
std::vector<PacketFeedback> packet_feedback_vector;
bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
rtc::nullopt);
}
TEST_F(LegacyDelayBasedBweTest, NoCrashOnlyLostFeedback) {
std::vector<PacketFeedback> packet_feedback_vector;
packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived,
PacketFeedback::kNoSendTime,
0, 1500, PacedPacketInfo()));
packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived,
PacketFeedback::kNoSendTime,
1, 1500, PacedPacketInfo()));
bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
rtc::nullopt);
}
TEST_F(LegacyDelayBasedBweTest, ProbeDetection) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
}
EXPECT_TRUE(bitrate_observer_.updated());
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u);
}
TEST_F(LegacyDelayBasedBweTest, ProbeDetectionNonPacedPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, kPacingInfo0);
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingFeedback(now_ms, now_ms, seq_num++, 100, PacedPacketInfo());
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u);
}
TEST_F(LegacyDelayBasedBweTest, ProbeDetectionFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster0; ++i) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo0);
}
EXPECT_FALSE(bitrate_observer_.updated());
}
TEST_F(LegacyDelayBasedBweTest, ProbeDetectionSlowerArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
// Since the receive rate is significantly below the send rate, we expect to
// use 95% of the estimated capacity.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
kTargetUtilizationFraction * 1140000u, 10000u);
}
TEST_F(LegacyDelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
// Since the receive rate is significantly below the send rate, we expect to
// use 95% of the estimated capacity.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbesCluster1; ++i) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, kPacingInfo1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
kTargetUtilizationFraction * 4000000u, 10000u);
}
TEST_F(LegacyDelayBasedBweTest, GetExpectedBwePeriodMs) {
int64_t default_interval_ms = bitrate_estimator_->GetExpectedBwePeriodMs();
EXPECT_GT(default_interval_ms, 0);
CapacityDropTestHelper(1, true, 333, 0);
int64_t interval_ms = bitrate_estimator_->GetExpectedBwePeriodMs();
EXPECT_GT(interval_ms, 0);
EXPECT_NE(interval_ms, default_interval_ms);
}
TEST_F(LegacyDelayBasedBweTest, InitialBehavior) {
InitialBehaviorTestHelper(730000);
}
TEST_F(LegacyDelayBasedBweTest, RateIncreaseReordering) {
RateIncreaseReorderingTestHelper(730000);
}
TEST_F(LegacyDelayBasedBweTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(627);
}
TEST_F(LegacyDelayBasedBweTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 300, 0);
}
TEST_F(LegacyDelayBasedBweTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 867, 30000);
}
TEST_F(LegacyDelayBasedBweTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 933, -30000);
}
TEST_F(LegacyDelayBasedBweTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 333, 0);
}
TEST_F(LegacyDelayBasedBweTest, TestTimestampGrouping) {
TestTimestampGroupingTestHelper();
}
TEST_F(LegacyDelayBasedBweTest, TestShortTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after 35 seconds. This
// will make abs send time wrap, so if streams aren't timed out properly
// the next 30 seconds of packets will be out of order.
TestWrappingHelper(35);
}
TEST_F(LegacyDelayBasedBweTest, TestLongTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after some multiple of
// 64 seconds later. This will cause a zero difference in abs send times due
// to the wrap, but a big difference in arrival time, if streams aren't
// properly timed out.
TestWrappingHelper(10 * 64);
}
TEST_F(LegacyDelayBasedBweTest, TestInitialOveruse) {
const uint32_t kStartBitrate = 300e3;
const uint32_t kInitialCapacityBps = 200e3;
const uint32_t kDummySsrc = 0;
// High FPS to ensure that we send a lot of packets in a short time.
const int kFps = 90;
stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate));
stream_generator_->set_capacity_bps(kInitialCapacityBps);
// Needed to initialize the AimdRateControl.
bitrate_estimator_->SetStartBitrate(kStartBitrate);
// Produce 30 frames (in 1/3 second) and give them to the estimator.
uint32_t bitrate_bps = kStartBitrate;
bool seen_overuse = false;
for (int i = 0; i < 30; ++i) {
bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
// The purpose of this test is to ensure that we back down even if we don't
// have any acknowledged bitrate estimate yet. Hence, if the test works
// as expected, we should not have a measured bitrate yet.
EXPECT_FALSE(acknowledged_bitrate_estimator_->bitrate_bps().has_value());
if (overuse) {
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate / 2, 15000);
bitrate_bps = bitrate_observer_.latest_bitrate();
seen_overuse = true;
break;
} else if (bitrate_observer_.updated()) {
bitrate_bps = bitrate_observer_.latest_bitrate();
bitrate_observer_.Reset();
}
}
EXPECT_TRUE(seen_overuse);
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kStartBitrate / 2, 15000);
}
} // namespace webrtc