| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/congestion_controller/goog_cc/trendline_estimator.h" |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| |
| #include "api/optional.h" |
| #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| |
| namespace webrtc { |
| namespace webrtc_cc { |
| |
| namespace { |
| rtc::Optional<double> LinearFitSlope( |
| const std::deque<std::pair<double, double>>& points) { |
| RTC_DCHECK(points.size() >= 2); |
| // Compute the "center of mass". |
| double sum_x = 0; |
| double sum_y = 0; |
| for (const auto& point : points) { |
| sum_x += point.first; |
| sum_y += point.second; |
| } |
| double x_avg = sum_x / points.size(); |
| double y_avg = sum_y / points.size(); |
| // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2 |
| double numerator = 0; |
| double denominator = 0; |
| for (const auto& point : points) { |
| numerator += (point.first - x_avg) * (point.second - y_avg); |
| denominator += (point.first - x_avg) * (point.first - x_avg); |
| } |
| if (denominator == 0) |
| return rtc::nullopt; |
| return numerator / denominator; |
| } |
| |
| constexpr double kMaxAdaptOffsetMs = 15.0; |
| constexpr double kOverUsingTimeThreshold = 10; |
| constexpr int kMinNumDeltas = 60; |
| |
| } // namespace |
| |
| enum { kDeltaCounterMax = 1000 }; |
| |
| TrendlineEstimator::TrendlineEstimator(size_t window_size, |
| double smoothing_coef, |
| double threshold_gain) |
| : window_size_(window_size), |
| smoothing_coef_(smoothing_coef), |
| threshold_gain_(threshold_gain), |
| num_of_deltas_(0), |
| first_arrival_time_ms_(-1), |
| accumulated_delay_(0), |
| smoothed_delay_(0), |
| delay_hist_(), |
| trendline_(0), |
| k_up_(0.0087), |
| k_down_(0.039), |
| overusing_time_threshold_(kOverUsingTimeThreshold), |
| threshold_(12.5), |
| last_update_ms_(-1), |
| prev_offset_(0.0), |
| time_over_using_(-1), |
| overuse_counter_(0), |
| hypothesis_(BandwidthUsage::kBwNormal) {} |
| |
| TrendlineEstimator::~TrendlineEstimator() {} |
| |
| void TrendlineEstimator::Update(double recv_delta_ms, |
| double send_delta_ms, |
| int64_t arrival_time_ms) { |
| const double delta_ms = recv_delta_ms - send_delta_ms; |
| ++num_of_deltas_; |
| if (num_of_deltas_ > kDeltaCounterMax) |
| num_of_deltas_ = kDeltaCounterMax; |
| if (first_arrival_time_ms_ == -1) |
| first_arrival_time_ms_ = arrival_time_ms; |
| |
| // Exponential backoff filter. |
| accumulated_delay_ += delta_ms; |
| BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms, |
| accumulated_delay_); |
| smoothed_delay_ = smoothing_coef_ * smoothed_delay_ + |
| (1 - smoothing_coef_) * accumulated_delay_; |
| BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms, |
| smoothed_delay_); |
| |
| // Simple linear regression. |
| delay_hist_.push_back(std::make_pair( |
| static_cast<double>(arrival_time_ms - first_arrival_time_ms_), |
| smoothed_delay_)); |
| if (delay_hist_.size() > window_size_) |
| delay_hist_.pop_front(); |
| if (delay_hist_.size() == window_size_) { |
| // Only update trendline_ if it is possible to fit a line to the data. |
| trendline_ = LinearFitSlope(delay_hist_).value_or(trendline_); |
| } |
| |
| BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trendline_); |
| |
| Detect(trendline_slope(), send_delta_ms, num_of_deltas(), arrival_time_ms); |
| } |
| |
| BandwidthUsage TrendlineEstimator::State() const { |
| return hypothesis_; |
| } |
| |
| void TrendlineEstimator::Detect(double offset, |
| double ts_delta, |
| int num_of_deltas, |
| int64_t now_ms) { |
| if (num_of_deltas < 2) { |
| hypothesis_ = BandwidthUsage::kBwNormal; |
| return; |
| } |
| const double T = std::min(num_of_deltas, kMinNumDeltas) * offset; |
| BWE_TEST_LOGGING_PLOT(1, "T", now_ms, T); |
| BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_); |
| if (T > threshold_) { |
| if (time_over_using_ == -1) { |
| // Initialize the timer. Assume that we've been |
| // over-using half of the time since the previous |
| // sample. |
| time_over_using_ = ts_delta / 2; |
| } else { |
| // Increment timer |
| time_over_using_ += ts_delta; |
| } |
| overuse_counter_++; |
| if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) { |
| if (offset >= prev_offset_) { |
| time_over_using_ = 0; |
| overuse_counter_ = 0; |
| hypothesis_ = BandwidthUsage::kBwOverusing; |
| } |
| } |
| } else if (T < -threshold_) { |
| time_over_using_ = -1; |
| overuse_counter_ = 0; |
| hypothesis_ = BandwidthUsage::kBwUnderusing; |
| } else { |
| time_over_using_ = -1; |
| overuse_counter_ = 0; |
| hypothesis_ = BandwidthUsage::kBwNormal; |
| } |
| prev_offset_ = offset; |
| |
| UpdateThreshold(T, now_ms); |
| } |
| |
| void TrendlineEstimator::UpdateThreshold(double modified_offset, |
| int64_t now_ms) { |
| if (last_update_ms_ == -1) |
| last_update_ms_ = now_ms; |
| |
| if (fabs(modified_offset) > threshold_ + kMaxAdaptOffsetMs) { |
| // Avoid adapting the threshold to big latency spikes, caused e.g., |
| // by a sudden capacity drop. |
| last_update_ms_ = now_ms; |
| return; |
| } |
| |
| const double k = fabs(modified_offset) < threshold_ ? k_down_ : k_up_; |
| const int64_t kMaxTimeDeltaMs = 100; |
| int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs); |
| threshold_ += k * (fabs(modified_offset) - threshold_) * time_delta_ms; |
| threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f); |
| last_update_ms_ = now_ms; |
| } |
| |
| } // namespace webrtc_cc |
| } // namespace webrtc |