|  | /* | 
|  | *  Copyright 2015 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/bit_buffer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  |  | 
|  | #include "rtc_base/checks.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Returns the lowest (right-most) `bit_count` bits in `byte`. | 
|  | uint8_t LowestBits(uint8_t byte, size_t bit_count) { | 
|  | RTC_DCHECK_LE(bit_count, 8); | 
|  | return byte & ((1 << bit_count) - 1); | 
|  | } | 
|  |  | 
|  | // Returns the highest (left-most) `bit_count` bits in `byte`, shifted to the | 
|  | // lowest bits (to the right). | 
|  | uint8_t HighestBits(uint8_t byte, size_t bit_count) { | 
|  | RTC_DCHECK_LE(bit_count, 8); | 
|  | uint8_t shift = 8 - static_cast<uint8_t>(bit_count); | 
|  | uint8_t mask = 0xFF << shift; | 
|  | return (byte & mask) >> shift; | 
|  | } | 
|  |  | 
|  | // Returns the highest byte of `val` in a uint8_t. | 
|  | uint8_t HighestByte(uint64_t val) { | 
|  | return static_cast<uint8_t>(val >> 56); | 
|  | } | 
|  |  | 
|  | // Returns the result of writing partial data from `source`, of | 
|  | // `source_bit_count` size in the highest bits, to `target` at | 
|  | // `target_bit_offset` from the highest bit. | 
|  | uint8_t WritePartialByte(uint8_t source, | 
|  | size_t source_bit_count, | 
|  | uint8_t target, | 
|  | size_t target_bit_offset) { | 
|  | RTC_DCHECK(target_bit_offset < 8); | 
|  | RTC_DCHECK(source_bit_count < 9); | 
|  | RTC_DCHECK(source_bit_count <= (8 - target_bit_offset)); | 
|  | // Generate a mask for just the bits we're going to overwrite, so: | 
|  | uint8_t mask = | 
|  | // The number of bits we want, in the most significant bits... | 
|  | static_cast<uint8_t>(0xFF << (8 - source_bit_count)) | 
|  | // ...shifted over to the target offset from the most signficant bit. | 
|  | >> target_bit_offset; | 
|  |  | 
|  | // We want the target, with the bits we'll overwrite masked off, or'ed with | 
|  | // the bits from the source we want. | 
|  | return (target & ~mask) | (source >> target_bit_offset); | 
|  | } | 
|  |  | 
|  | // Counts the number of bits used in the binary representation of val. | 
|  | size_t CountBits(uint64_t val) { | 
|  | size_t bit_count = 0; | 
|  | while (val != 0) { | 
|  | bit_count++; | 
|  | val >>= 1; | 
|  | } | 
|  | return bit_count; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count) | 
|  | : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() { | 
|  | RTC_DCHECK(static_cast<uint64_t>(byte_count_) <= | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  | } | 
|  |  | 
|  | uint64_t BitBuffer::RemainingBitCount() const { | 
|  | return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadUInt8(uint8_t& val) { | 
|  | uint32_t bit_val; | 
|  | if (!ReadBits(sizeof(uint8_t) * 8, bit_val)) { | 
|  | return false; | 
|  | } | 
|  | RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max()); | 
|  | val = static_cast<uint8_t>(bit_val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadUInt16(uint16_t& val) { | 
|  | uint32_t bit_val; | 
|  | if (!ReadBits(sizeof(uint16_t) * 8, bit_val)) { | 
|  | return false; | 
|  | } | 
|  | RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max()); | 
|  | val = static_cast<uint16_t>(bit_val); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadUInt32(uint32_t& val) { | 
|  | return ReadBits(sizeof(uint32_t) * 8, val); | 
|  | } | 
|  |  | 
|  | bool BitBuffer::PeekBits(size_t bit_count, uint32_t& val) { | 
|  | // TODO(nisse): Could allow bit_count == 0 and always return success. But | 
|  | // current code reads one byte beyond end of buffer in the case that | 
|  | // RemainingBitCount() == 0 and bit_count == 0. | 
|  | RTC_DCHECK(bit_count > 0); | 
|  | if (bit_count > RemainingBitCount() || bit_count > 32) { | 
|  | return false; | 
|  | } | 
|  | const uint8_t* bytes = bytes_ + byte_offset_; | 
|  | size_t remaining_bits_in_current_byte = 8 - bit_offset_; | 
|  | uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); | 
|  | // If we're reading fewer bits than what's left in the current byte, just | 
|  | // return the portion of this byte that we need. | 
|  | if (bit_count < remaining_bits_in_current_byte) { | 
|  | val = HighestBits(bits, bit_offset_ + bit_count); | 
|  | return true; | 
|  | } | 
|  | // Otherwise, subtract what we've read from the bit count and read as many | 
|  | // full bytes as we can into bits. | 
|  | bit_count -= remaining_bits_in_current_byte; | 
|  | while (bit_count >= 8) { | 
|  | bits = (bits << 8) | *bytes++; | 
|  | bit_count -= 8; | 
|  | } | 
|  | // Whatever we have left is smaller than a byte, so grab just the bits we need | 
|  | // and shift them into the lowest bits. | 
|  | if (bit_count > 0) { | 
|  | bits <<= bit_count; | 
|  | bits |= HighestBits(*bytes, bit_count); | 
|  | } | 
|  | val = bits; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::PeekBits(size_t bit_count, uint64_t& val) { | 
|  | // TODO(nisse): Could allow bit_count == 0 and always return success. But | 
|  | // current code reads one byte beyond end of buffer in the case that | 
|  | // RemainingBitCount() == 0 and bit_count == 0. | 
|  | RTC_DCHECK(bit_count > 0); | 
|  | if (bit_count > RemainingBitCount() || bit_count > 64) { | 
|  | return false; | 
|  | } | 
|  | const uint8_t* bytes = bytes_ + byte_offset_; | 
|  | size_t remaining_bits_in_current_byte = 8 - bit_offset_; | 
|  | uint64_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); | 
|  | // If we're reading fewer bits than what's left in the current byte, just | 
|  | // return the portion of this byte that we need. | 
|  | if (bit_count < remaining_bits_in_current_byte) { | 
|  | val = HighestBits(bits, bit_offset_ + bit_count); | 
|  | return true; | 
|  | } | 
|  | // Otherwise, subtract what we've read from the bit count and read as many | 
|  | // full bytes as we can into bits. | 
|  | bit_count -= remaining_bits_in_current_byte; | 
|  | while (bit_count >= 8) { | 
|  | bits = (bits << 8) | *bytes++; | 
|  | bit_count -= 8; | 
|  | } | 
|  | // Whatever we have left is smaller than a byte, so grab just the bits we need | 
|  | // and shift them into the lowest bits. | 
|  | if (bit_count > 0) { | 
|  | bits <<= bit_count; | 
|  | bits |= HighestBits(*bytes, bit_count); | 
|  | } | 
|  | val = bits; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadBits(size_t bit_count, uint32_t& val) { | 
|  | return PeekBits(bit_count, val) && ConsumeBits(bit_count); | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadBits(size_t bit_count, uint64_t& val) { | 
|  | return PeekBits(bit_count, val) && ConsumeBits(bit_count); | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ConsumeBytes(size_t byte_count) { | 
|  | return ConsumeBits(byte_count * 8); | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ConsumeBits(size_t bit_count) { | 
|  | if (bit_count > RemainingBitCount()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | byte_offset_ += (bit_offset_ + bit_count) / 8; | 
|  | bit_offset_ = (bit_offset_ + bit_count) % 8; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadNonSymmetric(uint32_t num_values, uint32_t& val) { | 
|  | RTC_DCHECK_GT(num_values, 0); | 
|  | RTC_DCHECK_LE(num_values, uint32_t{1} << 31); | 
|  | if (num_values == 1) { | 
|  | // When there is only one possible value, it requires zero bits to store it. | 
|  | // But ReadBits doesn't support reading zero bits. | 
|  | val = 0; | 
|  | return true; | 
|  | } | 
|  | size_t count_bits = CountBits(num_values); | 
|  | uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; | 
|  |  | 
|  | if (!ReadBits(count_bits - 1, val)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (val < num_min_bits_values) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t extra_bit; | 
|  | if (!ReadBits(/*bit_count=*/1, extra_bit)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | val = (val << 1) + extra_bit - num_min_bits_values; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadExponentialGolomb(uint32_t& val) { | 
|  | // Store off the current byte/bit offset, in case we want to restore them due | 
|  | // to a failed parse. | 
|  | size_t original_byte_offset = byte_offset_; | 
|  | size_t original_bit_offset = bit_offset_; | 
|  |  | 
|  | // Count the number of leading 0 bits by peeking/consuming them one at a time. | 
|  | size_t zero_bit_count = 0; | 
|  | uint32_t peeked_bit; | 
|  | while (PeekBits(1, peeked_bit) && peeked_bit == 0) { | 
|  | zero_bit_count++; | 
|  | ConsumeBits(1); | 
|  | } | 
|  |  | 
|  | // We should either be at the end of the stream, or the next bit should be 1. | 
|  | RTC_DCHECK(!PeekBits(1, peeked_bit) || peeked_bit == 1); | 
|  |  | 
|  | // The bit count of the value is the number of zeros + 1. Make sure that many | 
|  | // bits fits in a uint32_t and that we have enough bits left for it, and then | 
|  | // read the value. | 
|  | size_t value_bit_count = zero_bit_count + 1; | 
|  | if (value_bit_count > 32 || !ReadBits(value_bit_count, val)) { | 
|  | RTC_CHECK(Seek(original_byte_offset, original_bit_offset)); | 
|  | return false; | 
|  | } | 
|  | val -= 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::ReadSignedExponentialGolomb(int32_t& val) { | 
|  | uint32_t unsigned_val; | 
|  | if (!ReadExponentialGolomb(unsigned_val)) { | 
|  | return false; | 
|  | } | 
|  | if ((unsigned_val & 1) == 0) { | 
|  | val = -static_cast<int32_t>(unsigned_val / 2); | 
|  | } else { | 
|  | val = (unsigned_val + 1) / 2; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void BitBuffer::GetCurrentOffset(size_t* out_byte_offset, | 
|  | size_t* out_bit_offset) { | 
|  | RTC_CHECK(out_byte_offset != nullptr); | 
|  | RTC_CHECK(out_bit_offset != nullptr); | 
|  | *out_byte_offset = byte_offset_; | 
|  | *out_bit_offset = bit_offset_; | 
|  | } | 
|  |  | 
|  | bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) { | 
|  | if (byte_offset > byte_count_ || bit_offset > 7 || | 
|  | (byte_offset == byte_count_ && bit_offset > 0)) { | 
|  | return false; | 
|  | } | 
|  | byte_offset_ = byte_offset; | 
|  | bit_offset_ = bit_offset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count) | 
|  | : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {} | 
|  |  | 
|  | bool BitBufferWriter::WriteUInt8(uint8_t val) { | 
|  | return WriteBits(val, sizeof(uint8_t) * 8); | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteUInt16(uint16_t val) { | 
|  | return WriteBits(val, sizeof(uint16_t) * 8); | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteUInt32(uint32_t val) { | 
|  | return WriteBits(val, sizeof(uint32_t) * 8); | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) { | 
|  | if (bit_count > RemainingBitCount()) { | 
|  | return false; | 
|  | } | 
|  | size_t total_bits = bit_count; | 
|  |  | 
|  | // For simplicity, push the bits we want to read from val to the highest bits. | 
|  | val <<= (sizeof(uint64_t) * 8 - bit_count); | 
|  |  | 
|  | uint8_t* bytes = writable_bytes_ + byte_offset_; | 
|  |  | 
|  | // The first byte is relatively special; the bit offset to write to may put us | 
|  | // in the middle of the byte, and the total bit count to write may require we | 
|  | // save the bits at the end of the byte. | 
|  | size_t remaining_bits_in_current_byte = 8 - bit_offset_; | 
|  | size_t bits_in_first_byte = | 
|  | std::min(bit_count, remaining_bits_in_current_byte); | 
|  | *bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes, | 
|  | bit_offset_); | 
|  | if (bit_count <= remaining_bits_in_current_byte) { | 
|  | // Nothing left to write, so quit early. | 
|  | return ConsumeBits(total_bits); | 
|  | } | 
|  |  | 
|  | // Subtract what we've written from the bit count, shift it off the value, and | 
|  | // write the remaining full bytes. | 
|  | val <<= bits_in_first_byte; | 
|  | bytes++; | 
|  | bit_count -= bits_in_first_byte; | 
|  | while (bit_count >= 8) { | 
|  | *bytes++ = HighestByte(val); | 
|  | val <<= 8; | 
|  | bit_count -= 8; | 
|  | } | 
|  |  | 
|  | // Last byte may also be partial, so write the remaining bits from the top of | 
|  | // val. | 
|  | if (bit_count > 0) { | 
|  | *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0); | 
|  | } | 
|  |  | 
|  | // All done! Consume the bits we've written. | 
|  | return ConsumeBits(total_bits); | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) { | 
|  | RTC_DCHECK_LT(val, num_values); | 
|  | RTC_DCHECK_LE(num_values, uint32_t{1} << 31); | 
|  | if (num_values == 1) { | 
|  | // When there is only one possible value, it requires zero bits to store it. | 
|  | // But WriteBits doesn't support writing zero bits. | 
|  | return true; | 
|  | } | 
|  | size_t count_bits = CountBits(num_values); | 
|  | uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; | 
|  |  | 
|  | return val < num_min_bits_values | 
|  | ? WriteBits(val, count_bits - 1) | 
|  | : WriteBits(val + num_min_bits_values, count_bits); | 
|  | } | 
|  |  | 
|  | size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val, | 
|  | uint32_t num_values) { | 
|  | RTC_DCHECK_LT(val, num_values); | 
|  | RTC_DCHECK_LE(num_values, uint32_t{1} << 31); | 
|  | size_t count_bits = CountBits(num_values); | 
|  | uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; | 
|  |  | 
|  | return val < num_min_bits_values ? (count_bits - 1) : count_bits; | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) { | 
|  | // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t | 
|  | // when encoded, so don't support writing it either. | 
|  | if (val == std::numeric_limits<uint32_t>::max()) { | 
|  | return false; | 
|  | } | 
|  | uint64_t val_to_encode = static_cast<uint64_t>(val) + 1; | 
|  |  | 
|  | // We need to write CountBits(val+1) 0s and then val+1. Since val (as a | 
|  | // uint64_t) has leading zeros, we can just write the total golomb encoded | 
|  | // size worth of bits, knowing the value will appear last. | 
|  | return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1); | 
|  | } | 
|  |  | 
|  | bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) { | 
|  | if (val == 0) { | 
|  | return WriteExponentialGolomb(0); | 
|  | } else if (val > 0) { | 
|  | uint32_t signed_val = val; | 
|  | return WriteExponentialGolomb((signed_val * 2) - 1); | 
|  | } else { | 
|  | if (val == std::numeric_limits<int32_t>::min()) | 
|  | return false;  // Not supported, would cause overflow. | 
|  | uint32_t signed_val = -val; | 
|  | return WriteExponentialGolomb(signed_val * 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |