blob: 5fe68b7dc35c2153bc2440c6fd94b10c9897d788 [file] [log] [blame]
/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/simulated_network.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <utility>
#include "absl/types/optional.h"
#include "api/test/simulated_network.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Calculate the time that it takes to send N `bits` on a
// network with link capacity equal to `capacity_kbps` starting at time
// `start_time`.
Timestamp CalculateArrivalTime(Timestamp start_time,
int64_t bits,
DataRate capacity) {
if (capacity.IsInfinite()) {
return start_time;
}
if (capacity.IsZero()) {
return Timestamp::PlusInfinity();
}
// Adding `capacity - 1` to the numerator rounds the extra delay caused by
// capacity constraints up to an integral microsecond. Sending 0 bits takes 0
// extra time, while sending 1 bit gets rounded up to 1 (the multiplication by
// 1000 is because capacity is in kbps).
// The factor 1000 comes from 10^6 / 10^3, where 10^6 is due to the time unit
// being us and 10^3 is due to the rate unit being kbps.
return start_time + TimeDelta::Micros((1000 * bits + capacity.kbps() - 1) /
capacity.kbps());
}
void UpdateLegacyConfiguration(SimulatedNetwork::Config& config) {
if (config.link_capacity_kbps != 0) {
RTC_DCHECK(config.link_capacity ==
DataRate::KilobitsPerSec(config.link_capacity_kbps) ||
config.link_capacity == DataRate::Infinity());
config.link_capacity = DataRate::KilobitsPerSec(config.link_capacity_kbps);
}
}
} // namespace
SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed)
: random_(random_seed), bursting_(false), last_enqueue_time_us_(0) {
SetConfig(config);
}
SimulatedNetwork::~SimulatedNetwork() = default;
void SimulatedNetwork::SetConfig(const Config& config) {
MutexLock lock(&config_lock_);
config_state_.config = config; // Shallow copy of the struct.
UpdateLegacyConfiguration(config_state_.config);
double prob_loss = config.loss_percent / 100.0;
if (config_state_.config.avg_burst_loss_length == -1) {
// Uniform loss
config_state_.prob_loss_bursting = prob_loss;
config_state_.prob_start_bursting = prob_loss;
} else {
// Lose packets according to a gilbert-elliot model.
int avg_burst_loss_length = config.avg_burst_loss_length;
int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));
RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
<< "For a total packet loss of " << config.loss_percent
<< "%% then"
" avg_burst_loss_length must be "
<< min_avg_burst_loss_length + 1 << " or higher.";
config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length);
config_state_.prob_start_bursting =
prob_loss / (1 - prob_loss) / avg_burst_loss_length;
}
}
void SimulatedNetwork::SetConfig(const BuiltInNetworkBehaviorConfig& new_config,
Timestamp config_update_time) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
if (!capacity_link_.empty()) {
// Calculate and update how large portion of the packet first in the
// capacity link is left to to send at time `config_update_time`.
const BuiltInNetworkBehaviorConfig& current_config =
GetConfigState().config;
TimeDelta duration_with_current_config =
config_update_time - capacity_link_.front().last_update_time;
RTC_DCHECK_GE(duration_with_current_config, TimeDelta::Zero());
capacity_link_.front().bits_left_to_send -= std::min(
duration_with_current_config.ms() * current_config.link_capacity.kbps(),
capacity_link_.front().bits_left_to_send);
capacity_link_.front().last_update_time = config_update_time;
}
SetConfig(new_config);
UpdateCapacityQueue(GetConfigState(), config_update_time);
if (UpdateNextProcessTime() && next_process_time_changed_callback_) {
next_process_time_changed_callback_();
}
}
void SimulatedNetwork::UpdateConfig(
std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) {
MutexLock lock(&config_lock_);
config_modifier(&config_state_.config);
UpdateLegacyConfiguration(config_state_.config);
}
void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) {
MutexLock lock(&config_lock_);
config_state_.pause_transmission_until_us = until_us;
}
bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
// Check that old packets don't get enqueued, the SimulatedNetwork expect that
// the packets' send time is monotonically increasing. The tolerance for
// non-monotonic enqueue events is 0.5 ms because on multi core systems
// clock_gettime(CLOCK_MONOTONIC) can show non-monotonic behaviour between
// theads running on different cores.
// TODO(bugs.webrtc.org/14525): Open a bug on this with the goal to re-enable
// the DCHECK.
// At the moment, we see more than 130ms between non-monotonic events, which
// is more than expected.
// RTC_DCHECK_GE(packet.send_time_us - last_enqueue_time_us_, -2000);
ConfigState state = GetConfigState();
// If the network config requires packet overhead, let's apply it as early as
// possible.
packet.size += state.config.packet_overhead;
// If `queue_length_packets` is 0, the queue size is infinite.
if (state.config.queue_length_packets > 0 &&
capacity_link_.size() >= state.config.queue_length_packets) {
// Too many packet on the link, drop this one.
return false;
}
// Note that arrival time will be updated when previous packets are dequeued
// from the capacity link.
// A packet can not enter the narrow section before the last packet has exit.
Timestamp enqueue_time = Timestamp::Micros(packet.send_time_us);
Timestamp arrival_time =
capacity_link_.empty()
? CalculateArrivalTime(
std::max(enqueue_time, last_capacity_link_exit_time_),
packet.size * 8, state.config.link_capacity)
: Timestamp::PlusInfinity();
capacity_link_.push(
{.packet = packet,
.last_update_time = enqueue_time,
.bits_left_to_send = 8 * static_cast<int64_t>(packet.size),
.arrival_time = arrival_time});
// Only update `next_process_time_` if not already set. Otherwise,
// next_process_time_ is calculated when a packet is dequeued. Note that this
// means that the newly enqueued packet risk having an arrival time before
// `next_process_time_` if packet reordering is allowed and
// config.delay_standard_deviation_ms is set.
// TODO(bugs.webrtc.org/14525): Consider preventing this.
if (next_process_time_.IsInfinite() && arrival_time.IsFinite()) {
RTC_DCHECK_EQ(capacity_link_.size(), 1);
next_process_time_ = arrival_time;
}
last_enqueue_time_us_ = packet.send_time_us;
return true;
}
absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
if (next_process_time_.IsFinite()) {
return next_process_time_.us();
}
return absl::nullopt;
}
void SimulatedNetwork::UpdateCapacityQueue(ConfigState state,
Timestamp time_now) {
// Only the first packet in capacity_link_ have a calculated arrival time
// (when packet leave the narrow section), and time when it entered the narrow
// section. Also, the configuration may have changed. Thus we need to
// calculate the arrival time again before maybe moving the packet to the
// delay link.
if (!capacity_link_.empty()) {
capacity_link_.front().last_update_time = std::max(
capacity_link_.front().last_update_time, last_capacity_link_exit_time_);
capacity_link_.front().arrival_time = CalculateArrivalTime(
capacity_link_.front().last_update_time,
capacity_link_.front().bits_left_to_send, state.config.link_capacity);
}
// The capacity link is empty or the first packet is not expected to exit yet.
if (capacity_link_.empty() ||
time_now < capacity_link_.front().arrival_time) {
return;
}
bool reorder_packets = false;
do {
// Time to get this packet (the original or just updated arrival_time is
// smaller or equal to time_now_us).
PacketInfo packet = capacity_link_.front();
RTC_DCHECK(packet.arrival_time.IsFinite());
capacity_link_.pop();
// If the network is paused, the pause will be implemented as an extra delay
// to be spent in the `delay_link_` queue.
if (state.pause_transmission_until_us > packet.arrival_time.us()) {
packet.arrival_time =
Timestamp::Micros(state.pause_transmission_until_us);
}
// Store the original arrival time, before applying packet loss or extra
// delay. This is needed to know when it is the first available time the
// next packet in the `capacity_link_` queue can start transmitting.
last_capacity_link_exit_time_ = packet.arrival_time;
// Drop packets at an average rate of `state.config.loss_percent` with
// and average loss burst length of `state.config.avg_burst_loss_length`.
if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) ||
(!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) {
bursting_ = true;
packet.arrival_time = Timestamp::MinusInfinity();
} else {
// If packets are not dropped, apply extra delay as configured.
bursting_ = false;
TimeDelta arrival_time_jitter = TimeDelta::Micros(std::max(
random_.Gaussian(state.config.queue_delay_ms * 1000,
state.config.delay_standard_deviation_ms * 1000),
0.0));
// If reordering is not allowed then adjust arrival_time_jitter
// to make sure all packets are sent in order.
Timestamp last_arrival_time = delay_link_.empty()
? Timestamp::MinusInfinity()
: delay_link_.back().arrival_time;
if (!state.config.allow_reordering && !delay_link_.empty() &&
packet.arrival_time + arrival_time_jitter < last_arrival_time) {
arrival_time_jitter = last_arrival_time - packet.arrival_time;
}
packet.arrival_time += arrival_time_jitter;
// Optimization: Schedule a reorder only when a packet will exit before
// the one in front.
if (last_arrival_time > packet.arrival_time) {
reorder_packets = true;
}
}
delay_link_.emplace_back(packet);
// If there are no packets in the queue, there is nothing else to do.
if (capacity_link_.empty()) {
break;
}
// If instead there is another packet in the `capacity_link_` queue, let's
// calculate its arrival_time based on the latest config (which might
// have been changed since it was enqueued).
Timestamp next_start = std::max(last_capacity_link_exit_time_,
capacity_link_.front().last_update_time);
capacity_link_.front().arrival_time =
CalculateArrivalTime(next_start, capacity_link_.front().packet.size * 8,
state.config.link_capacity);
// And if the next packet in the queue needs to exit, let's dequeue it.
} while (capacity_link_.front().arrival_time <= time_now);
if (state.config.allow_reordering && reorder_packets) {
// Packets arrived out of order and since the network config allows
// reordering, let's sort them per arrival_time to make so they will also
// be delivered out of order.
std::stable_sort(delay_link_.begin(), delay_link_.end(),
[](const PacketInfo& p1, const PacketInfo& p2) {
return p1.arrival_time < p2.arrival_time;
});
}
}
SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const {
MutexLock lock(&config_lock_);
return config_state_;
}
std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
int64_t receive_time_us) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
Timestamp receive_time = Timestamp::Micros(receive_time_us);
UpdateCapacityQueue(GetConfigState(), receive_time);
std::vector<PacketDeliveryInfo> packets_to_deliver;
// Check the extra delay queue.
while (!delay_link_.empty() &&
receive_time >= delay_link_.front().arrival_time) {
PacketInfo packet_info = delay_link_.front();
packets_to_deliver.emplace_back(PacketDeliveryInfo(
packet_info.packet, packet_info.arrival_time.IsFinite()
? packet_info.arrival_time.us()
: PacketDeliveryInfo::kNotReceived));
delay_link_.pop_front();
}
// There is no need to invoke `next_process_time_changed_callback_` here since
// it is expected that the user of NetworkBehaviorInterface calls
// NextDeliveryTimeUs after DequeueDeliverablePackets. See
// NetworkBehaviorInterface.
UpdateNextProcessTime();
return packets_to_deliver;
}
bool SimulatedNetwork::UpdateNextProcessTime() {
Timestamp next_process_time = next_process_time_;
next_process_time_ = Timestamp::PlusInfinity();
for (const PacketInfo& packet : delay_link_) {
if (packet.arrival_time.IsFinite()) {
next_process_time_ = packet.arrival_time;
break;
}
}
if (next_process_time_.IsInfinite() && !capacity_link_.empty()) {
next_process_time_ = capacity_link_.front().arrival_time;
}
return next_process_time != next_process_time_;
}
void SimulatedNetwork::RegisterDeliveryTimeChangedCallback(
absl::AnyInvocable<void()> callback) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
next_process_time_changed_callback_ = std::move(callback);
}
} // namespace webrtc