blob: 2b9a2c64288116b7f8c824ffc46a42ad1a1ffef9 [file] [log] [blame] [edit]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_sender.h"
#include <memory>
#include <utility>
#include <vector>
#include "absl/strings/string_view.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "api/rtc_event_log/rtc_event.h"
#include "api/rtp_packet_sender.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_timing.h"
#include "modules/rtp_rtcp/include/rtp_cvo.h"
#include "modules/rtp_rtcp/include/rtp_header_extension_map.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/packet_sequencer.h"
#include "modules/rtp_rtcp/source/rtp_format_video_generic.h"
#include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor.h"
#include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor_extension.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "modules/rtp_rtcp/source/rtp_sender_video.h"
#include "modules/rtp_rtcp/source/video_fec_generator.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/logging.h"
#include "rtc_base/rate_limiter.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mock_transport.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace {
enum : int { // The first valid value is 1.
kAbsoluteSendTimeExtensionId = 1,
kAudioLevelExtensionId,
kGenericDescriptorId,
kMidExtensionId,
kRepairedRidExtensionId,
kRidExtensionId,
kTransmissionTimeOffsetExtensionId,
kTransportSequenceNumberExtensionId,
kVideoRotationExtensionId,
kVideoTimingExtensionId,
};
const int kPayload = 100;
const int kRtxPayload = 98;
const uint32_t kTimestamp = 10;
const uint16_t kSeqNum = 33;
const uint32_t kSsrc = 725242;
const uint32_t kRtxSsrc = 12345;
const uint32_t kFlexFecSsrc = 45678;
const uint64_t kStartTime = 123456789;
const uint8_t kPayloadData[] = {47, 11, 32, 93, 89};
constexpr TimeDelta kDefaultExpectedRetransmissionTime = TimeDelta::Millis(125);
constexpr Frequency kRtpClockRate = Frequency::Hertz(90'000);
constexpr absl::string_view kMid = "mid";
constexpr absl::string_view kRid = "f";
constexpr bool kMarkerBit = true;
using ::testing::_;
using ::testing::AllOf;
using ::testing::AtLeast;
using ::testing::Contains;
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::Field;
using ::testing::Gt;
using ::testing::IsEmpty;
using ::testing::NiceMock;
using ::testing::Not;
using ::testing::Pointee;
using ::testing::Property;
using ::testing::Return;
using ::testing::SizeIs;
class MockRtpPacketPacer : public RtpPacketSender {
public:
MockRtpPacketPacer() {}
virtual ~MockRtpPacketPacer() {}
MOCK_METHOD(void,
EnqueuePackets,
(std::vector<std::unique_ptr<RtpPacketToSend>>),
(override));
MOCK_METHOD(void, RemovePacketsForSsrc, (uint32_t), (override));
};
uint32_t ToRtpTimestamp(Timestamp time) {
return static_cast<int64_t>((time - Timestamp::Zero()) * kRtpClockRate) &
0xFFFF'FFFF;
}
} // namespace
class RtpSenderTest : public ::testing::Test {
protected:
RtpSenderTest()
: time_controller_(Timestamp::Millis(kStartTime)),
env_(CreateEnvironment(time_controller_.GetClock())),
retransmission_rate_limiter_(&env_.clock(), 1000),
flexfec_sender_(env_,
0,
kFlexFecSsrc,
kSsrc,
"",
std::vector<RtpExtension>(),
std::vector<RtpExtensionSize>(),
nullptr) {}
void SetUp() override { SetUpRtpSender(true, false, nullptr); }
void SetUpRtpSender(bool populate_network2,
bool always_send_mid_and_rid,
VideoFecGenerator* fec_generator) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.fec_generator = fec_generator;
config.populate_network2_timestamp = populate_network2;
config.always_send_mid_and_rid = always_send_mid_and_rid;
CreateSender(config);
}
RtpRtcpInterface::Configuration GetDefaultConfig() {
RtpRtcpInterface::Configuration config;
config.local_media_ssrc = kSsrc;
config.rtx_send_ssrc = kRtxSsrc;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
config.paced_sender = &mock_paced_sender_;
// Configure rid unconditionally, it has effect only if
// corresponding header extension is enabled.
config.rid = std::string(kRid);
return config;
}
void CreateSender(const RtpRtcpInterface::Configuration& config) {
packet_history_ = std::make_unique<RtpPacketHistory>(
env_, RtpPacketHistory::PaddingMode::kRecentLargePacket);
sequencer_.emplace(kSsrc, kRtxSsrc,
/*require_marker_before_media_padding=*/!config.audio,
&env_.clock());
rtp_sender_ = std::make_unique<RTPSender>(
env_, config, packet_history_.get(), config.paced_sender);
sequencer_->set_media_sequence_number(kSeqNum);
rtp_sender_->SetTimestampOffset(0);
}
GlobalSimulatedTimeController time_controller_;
const Environment env_;
MockRtpPacketPacer mock_paced_sender_;
RateLimiter retransmission_rate_limiter_;
FlexfecSender flexfec_sender_;
std::optional<PacketSequencer> sequencer_;
std::unique_ptr<RtpPacketHistory> packet_history_;
std::unique_ptr<RTPSender> rtp_sender_;
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(int payload_type,
bool marker_bit,
uint32_t rtp_timestamp,
Timestamp capture_time) {
auto packet = rtp_sender_->AllocatePacket();
packet->SetPayloadType(payload_type);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet->SetMarker(marker_bit);
packet->SetTimestamp(rtp_timestamp);
packet->set_capture_time(capture_time);
return packet;
}
std::unique_ptr<RtpPacketToSend> SendPacket(Timestamp capture_time,
int payload_length) {
uint32_t rtp_timestamp = ToRtpTimestamp(capture_time);
auto packet =
BuildRtpPacket(kPayload, kMarkerBit, rtp_timestamp, capture_time);
packet->AllocatePayload(payload_length);
packet->set_allow_retransmission(true);
// Packet should be stored in a send bucket.
std::vector<std::unique_ptr<RtpPacketToSend>> packets(1);
packets[0] = std::make_unique<RtpPacketToSend>(*packet);
rtp_sender_->EnqueuePackets(std::move(packets));
return packet;
}
std::unique_ptr<RtpPacketToSend> SendGenericPacket() {
// Use maximum allowed size to catch corner cases when packet is dropped
// because of lack of capacity for the media packet, or for an rtx packet
// containing the media packet.
return SendPacket(/*capture_time=*/env_.clock().CurrentTime(),
/*payload_length=*/rtp_sender_->MaxRtpPacketSize() -
rtp_sender_->ExpectedPerPacketOverhead());
}
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
size_t target_size_bytes) {
return rtp_sender_->GeneratePadding(
target_size_bytes, /*media_has_been_sent=*/true,
sequencer_->CanSendPaddingOnMediaSsrc());
}
std::vector<std::unique_ptr<RtpPacketToSend>> Sequence(
std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
for (auto& packet : packets) {
sequencer_->Sequence(*packet);
}
return packets;
}
size_t GenerateAndSendPadding(size_t target_size_bytes) {
size_t generated_bytes = 0;
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
for (auto& packet : GeneratePadding(target_size_bytes)) {
generated_bytes += packet->payload_size() + packet->padding_size();
packets.push_back(std::move(packet));
}
rtp_sender_->EnqueuePackets(std::move(packets));
return generated_bytes;
}
// The following are helpers for configuring the RTPSender. They must be
// called before sending any packets.
// Enable the retransmission stream with sizable packet storage.
void EnableRtx() {
// RTX needs to be able to read the source packets from the packet store.
// Pick a number of packets to store big enough for any unit test.
constexpr uint16_t kNumberOfPacketsToStore = 100;
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, kNumberOfPacketsToStore);
rtp_sender_->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
}
// Enable sending of the MID header extension for both the primary SSRC and
// the RTX SSRC.
void EnableMidSending(absl::string_view mid) {
rtp_sender_->RegisterRtpHeaderExtension(RtpMid::Uri(), kMidExtensionId);
rtp_sender_->SetMid(mid);
}
// Enable sending of the RSID header extension for the primary SSRC and the
// RRSID header extension for the RTX SSRC.
void EnableRidSending() {
rtp_sender_->RegisterRtpHeaderExtension(RtpStreamId::Uri(),
kRidExtensionId);
rtp_sender_->RegisterRtpHeaderExtension(RepairedRtpStreamId::Uri(),
kRepairedRidExtensionId);
}
};
TEST_F(RtpSenderTest, AllocatePacketSetCsrcs) {
// Configure rtp_sender with csrc.
uint32_t csrcs[] = {0x23456789};
auto packet = rtp_sender_->AllocatePacket(csrcs);
ASSERT_TRUE(packet);
EXPECT_EQ(rtp_sender_->SSRC(), packet->Ssrc());
EXPECT_THAT(packet->Csrcs(), ElementsAreArray(csrcs));
}
TEST_F(RtpSenderTest, AllocatePacketReserveExtensions) {
// Configure rtp_sender with extensions.
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransmissionOffset::Uri(), kTransmissionTimeOffsetExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
AbsoluteSendTime::Uri(), kAbsoluteSendTimeExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
AudioLevelExtension::Uri(), kAudioLevelExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
VideoOrientation::Uri(), kVideoRotationExtensionId));
auto packet = rtp_sender_->AllocatePacket();
ASSERT_TRUE(packet);
// Preallocate BWE extensions RtpSender set itself.
EXPECT_TRUE(packet->HasExtension<TransmissionOffset>());
EXPECT_TRUE(packet->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(packet->HasExtension<TransportSequenceNumber>());
// Do not allocate media specific extensions.
EXPECT_FALSE(packet->HasExtension<AudioLevelExtension>());
EXPECT_FALSE(packet->HasExtension<VideoOrientation>());
}
TEST_F(RtpSenderTest, PaddingAlwaysAllowedOnAudio) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.audio = true;
CreateSender(config);
std::unique_ptr<RtpPacketToSend> audio_packet = rtp_sender_->AllocatePacket();
// Padding on audio stream allowed regardless of marker in the last packet.
audio_packet->SetMarker(false);
audio_packet->SetPayloadType(kPayload);
sequencer_->Sequence(*audio_packet);
const size_t kPaddingSize = 59;
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kPadding)),
Pointee(Property(&RtpPacketToSend::padding_size, kPaddingSize))))));
EXPECT_EQ(kPaddingSize, GenerateAndSendPadding(kPaddingSize));
// Requested padding size is too small, will send a larger one.
const size_t kMinPaddingSize = 50;
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(
AllOf(Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kPadding)),
Pointee(Property(&RtpPacketToSend::padding_size,
kMinPaddingSize))))));
EXPECT_EQ(kMinPaddingSize, GenerateAndSendPadding(kMinPaddingSize - 5));
}
TEST_F(RtpSenderTest, SendToNetworkForwardsPacketsToPacer) {
std::vector<std::unique_ptr<RtpPacketToSend>> packets(1);
packets[0] =
BuildRtpPacket(kPayload, kMarkerBit, kTimestamp, Timestamp::Zero());
Timestamp now = env_.clock().CurrentTime();
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::capture_time, now))))));
rtp_sender_->EnqueuePackets(std::move(packets));
}
TEST_F(RtpSenderTest, ReSendPacketForwardsPacketsToPacer) {
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
Timestamp now = env_.clock().CurrentTime();
auto packet = BuildRtpPacket(kPayload, kMarkerBit, kTimestamp, now);
packet->SetSequenceNumber(kSeqNum);
packet->set_allow_retransmission(true);
packet_history_->PutRtpPacket(std::move(packet), now);
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::Ssrc, kSsrc)),
Pointee(Property(&RtpPacketToSend::SequenceNumber, kSeqNum)),
Pointee(Property(&RtpPacketToSend::capture_time, now)),
Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kRetransmission))))));
EXPECT_TRUE(rtp_sender_->ReSendPacket(kSeqNum));
}
// This test sends 1 regular video packet, then 4 padding packets, and then
// 1 more regular packet.
TEST_F(RtpSenderTest, SendPadding) {
constexpr int kNumPaddingPackets = 4;
EXPECT_CALL(mock_paced_sender_, EnqueuePackets);
std::unique_ptr<RtpPacketToSend> media_packet =
SendPacket(/*capture_time=*/env_.clock().CurrentTime(),
/*payload_size=*/100);
sequencer_->Sequence(*media_packet);
// Wait 50 ms before generating each padding packet.
for (int i = 0; i < kNumPaddingPackets; ++i) {
time_controller_.AdvanceTime(TimeDelta::Millis(50));
const size_t kPaddingTargetBytes = 100; // Request 100 bytes of padding.
// Padding should be sent on the media ssrc, with a continous sequence
// number range. Size will be forced to full pack size and the timestamp
// shall be that of the last media packet.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::Ssrc, kSsrc),
Property(&RtpPacketToSend::padding_size, kMaxPaddingLength),
Property(&RtpPacketToSend::SequenceNumber,
media_packet->SequenceNumber() + i + 1),
Property(&RtpPacketToSend::Timestamp,
media_packet->Timestamp()))))));
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
Sequence(GeneratePadding(kPaddingTargetBytes));
ASSERT_THAT(padding_packets, SizeIs(1));
rtp_sender_->EnqueuePackets(std::move(padding_packets));
}
// Send a regular video packet again.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(Property(
&RtpPacketToSend::Timestamp, Gt(media_packet->Timestamp()))))));
std::unique_ptr<RtpPacketToSend> next_media_packet =
SendPacket(/*capture_time=*/env_.clock().CurrentTime(),
/*payload_size=*/100);
}
TEST_F(RtpSenderTest, NoPaddingAsFirstPacketWithoutBweExtensions) {
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
IsEmpty());
// Don't send padding before media even with RTX.
EnableRtx();
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
IsEmpty());
}
TEST_F(RtpSenderTest, RequiresRtxSsrcToEnableRtx) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = std::nullopt;
RTPSender rtp_sender(env_, config, packet_history_.get(),
config.paced_sender);
rtp_sender.SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender.SetRtxStatus(kRtxRetransmitted);
EXPECT_EQ(rtp_sender.RtxStatus(), kRtxOff);
}
TEST_F(RtpSenderTest, RequiresRtxPayloadTypesToEnableRtx) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = kRtxSsrc;
RTPSender rtp_sender(env_, config, packet_history_.get(),
config.paced_sender);
rtp_sender.SetRtxStatus(kRtxRetransmitted);
EXPECT_EQ(rtp_sender.RtxStatus(), kRtxOff);
}
TEST_F(RtpSenderTest, CanEnableRtxWhenRtxSsrcAndPayloadTypeAreConfigured) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = kRtxSsrc;
RTPSender rtp_sender(env_, config, packet_history_.get(),
config.paced_sender);
rtp_sender.SetRtxPayloadType(kRtxPayload, kPayload);
ASSERT_EQ(rtp_sender.RtxStatus(), kRtxOff);
rtp_sender.SetRtxStatus(kRtxRetransmitted);
EXPECT_EQ(rtp_sender.RtxStatus(), kRtxRetransmitted);
}
TEST_F(RtpSenderTest, AllowPaddingAsFirstPacketOnRtxWithTransportCc) {
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
// Padding can't be sent as first packet on media SSRC since we don't know
// what payload type to assign.
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
IsEmpty());
// With transportcc padding can be sent as first packet on the RTX SSRC.
EnableRtx();
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
Not(IsEmpty()));
}
TEST_F(RtpSenderTest, AllowPaddingAsFirstPacketOnRtxWithAbsSendTime) {
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
AbsoluteSendTime::Uri(), kAbsoluteSendTimeExtensionId));
// Padding can't be sent as first packet on media SSRC since we don't know
// what payload type to assign.
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
IsEmpty());
// With abs send time, padding can be sent as first packet on the RTX SSRC.
EnableRtx();
EXPECT_THAT(rtp_sender_->GeneratePadding(
/*target_size_bytes=*/100,
/*media_has_been_sent=*/false,
/*can_send_padding_on_media_ssrc=*/false),
Not(IsEmpty()));
}
TEST_F(RtpSenderTest, UpdatesTimestampsOnPlainRtxPadding) {
EnableRtx();
// Timestamps as set based on capture time in RtpSenderTest.
const Timestamp start_time = env_.clock().CurrentTime();
const uint32_t start_timestamp = ToRtpTimestamp(start_time);
// Start by sending one media packet.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::padding_size, 0u)),
Pointee(Property(&RtpPacketToSend::Timestamp, start_timestamp)),
Pointee(Property(&RtpPacketToSend::capture_time, start_time))))));
std::unique_ptr<RtpPacketToSend> media_packet =
SendPacket(start_time, /*payload_size=*/600);
sequencer_->Sequence(*media_packet);
// Advance time before sending padding.
const TimeDelta kTimeDiff = TimeDelta::Millis(17);
time_controller_.AdvanceTime(kTimeDiff);
// Timestamps on padding should be offset from the sent media.
EXPECT_THAT(
Sequence(GeneratePadding(/*target_size_bytes=*/100)),
Each(Pointee(AllOf(
Property(&RtpPacketToSend::padding_size, kMaxPaddingLength),
Property(&RtpPacketToSend::Timestamp,
start_timestamp + kRtpClockRate * kTimeDiff),
Property(&RtpPacketToSend::capture_time, start_time + kTimeDiff)))));
}
TEST_F(RtpSenderTest, KeepsTimestampsOnPayloadPadding) {
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
EnableRtx();
// Timestamps as set based on capture time in RtpSenderTest.
const Timestamp start_time = env_.clock().CurrentTime();
const uint32_t start_timestamp = ToRtpTimestamp(start_time);
const size_t kPayloadSize = 200;
const size_t kRtxHeaderSize = 2;
// Start by sending one media packet and putting in the packet history.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::padding_size, 0u)),
Pointee(Property(&RtpPacketToSend::Timestamp, start_timestamp)),
Pointee(Property(&RtpPacketToSend::capture_time, start_time))))));
std::unique_ptr<RtpPacketToSend> media_packet =
SendPacket(start_time, kPayloadSize);
packet_history_->PutRtpPacket(std::move(media_packet), start_time);
// Advance time before sending padding.
const TimeDelta kTimeDiff = TimeDelta::Millis(17);
time_controller_.AdvanceTime(kTimeDiff);
// Timestamps on payload padding should be set to original.
EXPECT_THAT(
GeneratePadding(/*target_size_bytes=*/100),
Each(AllOf(
Pointee(Property(&RtpPacketToSend::padding_size, 0u)),
Pointee(Property(&RtpPacketToSend::payload_size,
kPayloadSize + kRtxHeaderSize)),
Pointee(Property(&RtpPacketToSend::Timestamp, start_timestamp)),
Pointee(Property(&RtpPacketToSend::capture_time, start_time)))));
}
// Test that the MID header extension is included on sent packets when
// configured.
TEST_F(RtpSenderTest, MidIncludedOnSentPackets) {
EnableMidSending(kMid);
// Send a couple packets, expect both packets to have the MID set.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(
Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid)))))
.Times(2);
SendGenericPacket();
SendGenericPacket();
}
TEST_F(RtpSenderTest, RidIncludedOnSentPackets) {
EnableRidSending();
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(Property(
&RtpPacketToSend::GetExtension<RtpStreamId>, kRid)))));
SendGenericPacket();
}
TEST_F(RtpSenderTest, RidIncludedOnRtxSentPackets) {
EnableRtx();
EnableRidSending();
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::GetExtension<RtpStreamId>, kRid),
Property(&RtpPacketToSend::HasExtension<RepairedRtpStreamId>,
false))))))
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
sequencer_->Sequence(*packets[0]);
packet_history_->PutRtpPacket(std::move(packets[0]),
env_.clock().CurrentTime());
});
SendGenericPacket();
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::GetExtension<RepairedRtpStreamId>, kRid),
Property(&RtpPacketToSend::HasExtension<RtpStreamId>, false))))));
rtp_sender_->ReSendPacket(kSeqNum);
}
TEST_F(RtpSenderTest, MidAndRidNotIncludedOnSentPacketsAfterAck) {
EnableMidSending(kMid);
EnableRidSending();
// This first packet should include both MID and RID.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid),
Property(&RtpPacketToSend::GetExtension<RtpStreamId>, kRid))))));
auto first_built_packet = SendGenericPacket();
rtp_sender_->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet should include neither since an ack was received.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::HasExtension<RtpMid>, false),
Property(&RtpPacketToSend::HasExtension<RtpStreamId>, false))))));
SendGenericPacket();
}
TEST_F(RtpSenderTest, MidAndRidAlwaysIncludedOnSentPacketsWhenConfigured) {
SetUpRtpSender(false, /*always_send_mid_and_rid=*/true, nullptr);
EnableMidSending(kMid);
EnableRidSending();
// Send two media packets: one before and one after the ack.
// Due to the configuration, both sent packets should contain MID and RID.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(
AllOf(Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid),
Property(&RtpPacketToSend::GetExtension<RtpStreamId>, kRid))))))
.Times(2);
auto first_built_packet = SendGenericPacket();
rtp_sender_->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
SendGenericPacket();
}
// Test that the first RTX packet includes both MID and RRID even if the packet
// being retransmitted did not have MID or RID. The MID and RID are needed on
// the first packets for a given SSRC, and RTX packets are sent on a separate
// SSRC.
TEST_F(RtpSenderTest, MidAndRidIncludedOnFirstRtxPacket) {
EnableRtx();
EnableMidSending(kMid);
EnableRidSending();
// This first packet will include both MID and RID.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets);
auto first_built_packet = SendGenericPacket();
rtp_sender_->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet will include neither since an ack was received, put
// it in the packet history for retransmission.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(SizeIs(1)))
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
packet_history_->PutRtpPacket(std::move(packets[0]),
env_.clock().CurrentTime());
});
auto second_built_packet = SendGenericPacket();
// The first RTX packet should include MID and RRID.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid),
Property(&RtpPacketToSend::GetExtension<RepairedRtpStreamId>,
kRid))))));
rtp_sender_->ReSendPacket(second_built_packet->SequenceNumber());
}
// Test that the RTX packets sent after receving an ACK on the RTX SSRC does
// not include either MID or RRID even if the packet being retransmitted did
// had a MID or RID.
TEST_F(RtpSenderTest, MidAndRidNotIncludedOnRtxPacketsAfterAck) {
EnableRtx();
EnableMidSending(kMid);
EnableRidSending();
// This first packet will include both MID and RID.
auto first_built_packet = SendGenericPacket();
sequencer_->Sequence(*first_built_packet);
packet_history_->PutRtpPacket(
std::make_unique<RtpPacketToSend>(*first_built_packet),
/*send_time=*/env_.clock().CurrentTime());
rtp_sender_->OnReceivedAckOnSsrc(first_built_packet->SequenceNumber());
// The second packet will include neither since an ack was received.
auto second_built_packet = SendGenericPacket();
sequencer_->Sequence(*second_built_packet);
packet_history_->PutRtpPacket(
std::make_unique<RtpPacketToSend>(*second_built_packet),
/*send_time=*/env_.clock().CurrentTime());
// The first RTX packet will include MID and RRID.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(SizeIs(1)))
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
rtp_sender_->OnReceivedAckOnRtxSsrc(packets[0]->SequenceNumber());
packet_history_->MarkPacketAsSent(
*packets[0]->retransmitted_sequence_number());
});
rtp_sender_->ReSendPacket(second_built_packet->SequenceNumber());
// The second and third RTX packets should not include MID nor RRID.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::HasExtension<RtpMid>, false),
Property(&RtpPacketToSend::HasExtension<RepairedRtpStreamId>,
false))))))
.Times(2);
rtp_sender_->ReSendPacket(first_built_packet->SequenceNumber());
rtp_sender_->ReSendPacket(second_built_packet->SequenceNumber());
}
TEST_F(RtpSenderTest, MidAndRidAlwaysIncludedOnRtxPacketsWhenConfigured) {
SetUpRtpSender(false, /*always_send_mid_and_rid=*/true, nullptr);
EnableRtx();
EnableMidSending(kMid);
EnableRidSending();
// Send two media packets: one before and one after the ack.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(
AllOf(Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid),
Property(&RtpPacketToSend::GetExtension<RtpStreamId>, kRid))))))
.Times(2)
.WillRepeatedly(
[&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
packet_history_->PutRtpPacket(std::move(packets[0]),
env_.clock().CurrentTime());
});
auto media_packet1 = SendGenericPacket();
rtp_sender_->OnReceivedAckOnSsrc(media_packet1->SequenceNumber());
auto media_packet2 = SendGenericPacket();
// Send three RTX packets with different combinations of orders w.r.t. the
// media and RTX acks.
// Due to the configuration, all sent packets should contain MID
// and either RID (media) or RRID (RTX).
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::GetExtension<RtpMid>, kMid),
Property(&RtpPacketToSend::GetExtension<RepairedRtpStreamId>,
kRid))))))
.Times(3)
.WillRepeatedly(
[&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
rtp_sender_->OnReceivedAckOnRtxSsrc(packets[0]->SequenceNumber());
packet_history_->MarkPacketAsSent(
*packets[0]->retransmitted_sequence_number());
});
rtp_sender_->ReSendPacket(media_packet2->SequenceNumber());
rtp_sender_->ReSendPacket(media_packet1->SequenceNumber());
rtp_sender_->ReSendPacket(media_packet2->SequenceNumber());
}
// Test that if the RtpState indicates an ACK has been received on that SSRC
// then neither the MID nor RID header extensions will be sent.
TEST_F(RtpSenderTest, MidAndRidNotIncludedOnSentPacketsAfterRtpStateRestored) {
EnableMidSending(kMid);
EnableRidSending();
RtpState state = rtp_sender_->GetRtpState();
EXPECT_FALSE(state.ssrc_has_acked);
state.ssrc_has_acked = true;
rtp_sender_->SetRtpState(state);
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::HasExtension<RtpMid>, false),
Property(&RtpPacketToSend::HasExtension<RtpStreamId>, false))))));
SendGenericPacket();
}
// Test that if the RTX RtpState indicates an ACK has been received on that
// RTX SSRC then neither the MID nor RRID header extensions will be sent on
// RTX packets.
TEST_F(RtpSenderTest, MidAndRridNotIncludedOnRtxPacketsAfterRtpStateRestored) {
EnableRtx();
EnableMidSending(kMid);
EnableRidSending();
RtpState rtx_state = rtp_sender_->GetRtxRtpState();
EXPECT_FALSE(rtx_state.ssrc_has_acked);
rtx_state.ssrc_has_acked = true;
rtp_sender_->SetRtxRtpState(rtx_state);
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(SizeIs(1)))
.WillOnce([&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
packet_history_->PutRtpPacket(std::move(packets[0]),
env_.clock().CurrentTime());
});
auto built_packet = SendGenericPacket();
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(AllOf(
Property(&RtpPacketToSend::HasExtension<RtpMid>, false),
Property(&RtpPacketToSend::HasExtension<RtpStreamId>, false))))));
ASSERT_LT(0, rtp_sender_->ReSendPacket(built_packet->SequenceNumber()));
}
TEST_F(RtpSenderTest, RespectsNackBitrateLimit) {
const int32_t kPacketSize = 1400;
const int32_t kNumPackets = 30;
retransmission_rate_limiter_.SetMaxRate(kPacketSize * kNumPackets * 8);
EnableRtx();
std::vector<uint16_t> sequence_numbers;
for (int32_t i = 0; i < kNumPackets; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, /*marker_bit=*/true, /*rtp_timestamp=*/0,
/*capture_time=*/env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
sequencer_->Sequence(*packet);
sequence_numbers.push_back(packet->SequenceNumber());
packet_history_->PutRtpPacket(std::move(packet),
/*send_time=*/env_.clock().CurrentTime());
time_controller_.AdvanceTime(TimeDelta::Millis(1));
}
time_controller_.AdvanceTime(TimeDelta::Millis(1000 - kNumPackets));
// Resending should work - brings the bandwidth up to the limit.
// NACK bitrate is capped to the same bitrate as the encoder, since the max
// protection overhead is 50% (see MediaOptimization::SetTargetRates).
EXPECT_CALL(mock_paced_sender_, EnqueuePackets(ElementsAre(Pointee(Property(
&RtpPacketToSend::packet_type,
RtpPacketMediaType::kRetransmission)))))
.Times(kNumPackets)
.WillRepeatedly(
[&](std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
for (const auto& packet : packets) {
packet_history_->MarkPacketAsSent(
*packet->retransmitted_sequence_number());
}
});
rtp_sender_->OnReceivedNack(sequence_numbers, 0);
// Must be at least 5ms in between retransmission attempts.
time_controller_.AdvanceTime(TimeDelta::Millis(5));
// Resending should not work, bandwidth exceeded.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets).Times(0);
rtp_sender_->OnReceivedNack(sequence_numbers, 0);
}
TEST_F(RtpSenderTest, UpdatingCsrcsUpdatedOverhead) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = {};
CreateSender(config);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
// Using packet with two csrcs adds 2*4 bytes to the header.
uint32_t csrcs[] = {1, 2};
rtp_sender_->AllocatePacket(csrcs);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 20u);
}
TEST_F(RtpSenderTest, OnOverheadChanged) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = {};
CreateSender(config);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
rtp_sender_->RegisterRtpHeaderExtension(TransmissionOffset::Uri(),
kTransmissionTimeOffsetExtensionId);
// TransmissionTimeOffset extension has a size of 3B, but with the addition
// of header index and rounding to 4 byte boundary we end up with 20B total.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 20u);
}
TEST_F(RtpSenderTest, CountMidOnlyUntilAcked) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = {};
CreateSender(config);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
rtp_sender_->RegisterRtpHeaderExtension(RtpMid::Uri(), kMidExtensionId);
// Counted only if set.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
rtp_sender_->SetMid("foo");
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 36u);
rtp_sender_->RegisterRtpHeaderExtension(RtpStreamId::Uri(), kRidExtensionId);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 52u);
// Ack received, mid/rid no longer sent.
rtp_sender_->OnReceivedAckOnSsrc(0);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
}
TEST_F(RtpSenderTest, CountMidRidRridUntilAcked) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
CreateSender(config);
// Base RTP overhead is 12B and we use RTX which has an additional 2 bytes
// overhead.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 14u);
rtp_sender_->RegisterRtpHeaderExtension(RtpMid::Uri(), kMidExtensionId);
// Counted only if set.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 14u);
rtp_sender_->SetMid("foo");
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 38u);
rtp_sender_->RegisterRtpHeaderExtension(RtpStreamId::Uri(), kRidExtensionId);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 54u);
// mid/rrid may be shared with mid/rid when both are active.
rtp_sender_->RegisterRtpHeaderExtension(RepairedRtpStreamId::Uri(),
kRepairedRidExtensionId);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 54u);
// Ack received, mid/rid no longer sent but we still need space for
// mid/rrid which can no longer be shared with mid/rid.
rtp_sender_->OnReceivedAckOnSsrc(0);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 54u);
// Ack received for RTX, no need to send RRID anymore.
rtp_sender_->OnReceivedAckOnRtxSsrc(0);
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 14u);
}
TEST_F(RtpSenderTest, DontCountVolatileExtensionsIntoOverhead) {
RtpRtcpInterface::Configuration config = GetDefaultConfig();
config.rtx_send_ssrc = {};
CreateSender(config);
// Base RTP overhead is 12B.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
rtp_sender_->RegisterRtpHeaderExtension(InbandComfortNoiseExtension::Uri(),
1);
rtp_sender_->RegisterRtpHeaderExtension(AbsoluteCaptureTimeExtension::Uri(),
2);
rtp_sender_->RegisterRtpHeaderExtension(VideoOrientation::Uri(), 3);
rtp_sender_->RegisterRtpHeaderExtension(PlayoutDelayLimits::Uri(), 4);
rtp_sender_->RegisterRtpHeaderExtension(VideoContentTypeExtension::Uri(), 5);
rtp_sender_->RegisterRtpHeaderExtension(VideoTimingExtension::Uri(), 6);
rtp_sender_->RegisterRtpHeaderExtension(RepairedRtpStreamId::Uri(), 7);
rtp_sender_->RegisterRtpHeaderExtension(ColorSpaceExtension::Uri(), 8);
// Still only 12B counted since can't count on above being sent.
EXPECT_EQ(rtp_sender_->ExpectedPerPacketOverhead(), 12u);
}
TEST_F(RtpSenderTest, SendPacketHandlesRetransmissionHistory) {
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
// Ignore calls to EnqueuePackets() for this test.
EXPECT_CALL(mock_paced_sender_, EnqueuePackets).WillRepeatedly(Return());
// Build a media packet and put in the packet history.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
const uint16_t media_sequence_number = packet->SequenceNumber();
packet->set_allow_retransmission(true);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Simulate successful retransmission request.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_THAT(rtp_sender_->ReSendPacket(media_sequence_number), Gt(0));
// Packet already pending, retransmission not allowed.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_THAT(rtp_sender_->ReSendPacket(media_sequence_number), Eq(0));
// Simulate packet exiting pacer, mark as not longer pending.
packet_history_->MarkPacketAsSent(media_sequence_number);
// Retransmissions allowed again.
time_controller_.AdvanceTime(TimeDelta::Millis(30));
EXPECT_THAT(rtp_sender_->ReSendPacket(media_sequence_number), Gt(0));
}
TEST_F(RtpSenderTest, MarksRetransmittedPackets) {
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
// Build a media packet and put in the packet history.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
const uint32_t kMediaSsrc = 567;
const uint16_t kMediaSequenceNumber = 123;
packet->SetSsrc(kMediaSsrc);
packet->SetSequenceNumber(kMediaSequenceNumber);
packet->set_allow_retransmission(true);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Expect a retransmission packet marked with which packet it is a
// retransmit of.
EXPECT_CALL(
mock_paced_sender_,
EnqueuePackets(ElementsAre(AllOf(
Pointee(Property(&RtpPacketToSend::packet_type,
RtpPacketMediaType::kRetransmission)),
Pointee(Property(&RtpPacketToSend::original_ssrc, kMediaSsrc)),
Pointee(Property(&RtpPacketToSend::retransmitted_sequence_number,
Eq(kMediaSequenceNumber)))))));
EXPECT_THAT(rtp_sender_->ReSendPacket(kMediaSequenceNumber), Gt(0));
}
TEST_F(RtpSenderTest, GeneratedPaddingHasBweExtensions) {
// Min requested size in order to use RTX payload.
const size_t kMinPaddingSize = 50;
EnableRtx();
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransmissionOffset::Uri(), kTransmissionTimeOffsetExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
AbsoluteSendTime::Uri(), kAbsoluteSendTimeExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
// Put a packet in the history, in order to facilitate payload padding.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kMinPaddingSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Generate a plain padding packet, check that extensions are registered.
std::vector<std::unique_ptr<RtpPacketToSend>> generated_packets =
GeneratePadding(/*target_size_bytes=*/1);
ASSERT_THAT(generated_packets, SizeIs(1));
auto& plain_padding = generated_packets.front();
EXPECT_GT(plain_padding->padding_size(), 0u);
EXPECT_TRUE(plain_padding->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(plain_padding->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(plain_padding->HasExtension<TransmissionOffset>());
EXPECT_GT(plain_padding->padding_size(), 0u);
// Generate a payload padding packets, check that extensions are registered.
generated_packets = GeneratePadding(kMinPaddingSize);
ASSERT_EQ(generated_packets.size(), 1u);
auto& payload_padding = generated_packets.front();
EXPECT_EQ(payload_padding->padding_size(), 0u);
EXPECT_TRUE(payload_padding->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(payload_padding->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(payload_padding->HasExtension<TransmissionOffset>());
EXPECT_GT(payload_padding->payload_size(), 0u);
}
TEST_F(RtpSenderTest, GeneratedPaddingHasMidRidExtensions) {
EnableMidSending("mid");
EnableRidSending();
// Send a dummy video packet so it ends up in the packet history. Since we
// are not using RTX, it should never be used as padding.
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(1234);
packet->set_packet_type(RtpPacketMediaType::kVideo);
sequencer_->Sequence(*packet);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
GeneratePadding(/*target_size_bytes=*/1);
ASSERT_THAT(padding_packets, SizeIs(1));
EXPECT_TRUE(padding_packets[0]->HasExtension<RtpMid>());
EXPECT_TRUE(padding_packets[0]->HasExtension<RtpStreamId>());
}
TEST_F(RtpSenderTest, GeneratedPaddingOnRtxHasMidRidExtensions) {
EnableRtx();
EnableMidSending("mid");
EnableRidSending();
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
GeneratePadding(/*target_size_bytes=*/1);
ASSERT_THAT(padding_packets, SizeIs(1));
EXPECT_TRUE(padding_packets[0]->HasExtension<RtpMid>());
EXPECT_TRUE(padding_packets[0]->HasExtension<RepairedRtpStreamId>());
}
TEST_F(RtpSenderTest, GeneratePaddingResendsOldPacketsWithRtx) {
// Min requested size in order to use RTX payload.
const size_t kMinPaddingSize = 50;
rtp_sender_->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
const size_t kPayloadPacketSize = kMinPaddingSize;
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Generated padding has large enough budget that the video packet should be
// retransmitted as padding.
std::vector<std::unique_ptr<RtpPacketToSend>> generated_packets =
GeneratePadding(kMinPaddingSize);
ASSERT_EQ(generated_packets.size(), 1u);
auto& padding_packet = generated_packets.front();
EXPECT_EQ(padding_packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(padding_packet->Ssrc(), kRtxSsrc);
EXPECT_EQ(padding_packet->payload_size(),
kPayloadPacketSize + kRtxHeaderSize);
// Not enough budged for payload padding, use plain padding instead.
const size_t kPaddingBytesRequested = kMinPaddingSize - 1;
size_t padding_bytes_generated = 0;
generated_packets = GeneratePadding(kPaddingBytesRequested);
EXPECT_EQ(generated_packets.size(), 1u);
for (auto& packet : generated_packets) {
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(packet->Ssrc(), kRtxSsrc);
EXPECT_EQ(packet->payload_size(), 0u);
EXPECT_GT(packet->padding_size(), 0u);
padding_bytes_generated += packet->padding_size();
}
EXPECT_EQ(padding_bytes_generated, kMaxPaddingLength);
}
TEST_F(RtpSenderTest, LimitsPayloadPaddingSize) {
// RTX payload padding is limited to 3x target size.
const double kFactor = 3.0;
SetUpRtpSender(false, false, nullptr);
rtp_sender_->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_->SetRtxStatus(kRtxRetransmitted | kRtxRedundantPayloads);
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
// Send a dummy video packet so it ends up in the packet history.
const size_t kPayloadPacketSize = 1234u;
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Smallest target size that will result in the sent packet being returned as
// padding.
const size_t kMinTargerSizeForPayload =
(kPayloadPacketSize + kRtxHeaderSize) / kFactor;
// Generated padding has large enough budget that the video packet should be
// retransmitted as padding.
EXPECT_THAT(
GeneratePadding(kMinTargerSizeForPayload),
AllOf(Not(IsEmpty()),
Each(Pointee(Property(&RtpPacketToSend::padding_size, Eq(0u))))));
// If payload padding is > 2x requested size, plain padding is returned
// instead.
EXPECT_THAT(
GeneratePadding(kMinTargerSizeForPayload - 1),
AllOf(Not(IsEmpty()),
Each(Pointee(Property(&RtpPacketToSend::padding_size, Gt(0u))))));
}
TEST_F(RtpSenderTest, GeneratePaddingCreatesPurePaddingWithoutRtx) {
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 1);
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransmissionOffset::Uri(), kTransmissionTimeOffsetExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
AbsoluteSendTime::Uri(), kAbsoluteSendTimeExtensionId));
ASSERT_TRUE(rtp_sender_->RegisterRtpHeaderExtension(
TransportSequenceNumber::Uri(), kTransportSequenceNumberExtensionId));
const size_t kPayloadPacketSize = 1234;
// Send a dummy video packet so it ends up in the packet history. Since we
// are not using RTX, it should never be used as padding.
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, true, 0, env_.clock().CurrentTime());
packet->set_allow_retransmission(true);
packet->SetPayloadSize(kPayloadPacketSize);
packet->set_packet_type(RtpPacketMediaType::kVideo);
sequencer_->Sequence(*packet);
packet_history_->PutRtpPacket(std::move(packet), env_.clock().CurrentTime());
// Payload padding not available without RTX, only generate plain padding on
// the media SSRC.
// Number of padding packets is the requested padding size divided by max
// padding packet size, rounded up. Pure padding packets are always of the
// maximum size.
const size_t kPaddingBytesRequested = kPayloadPacketSize + kRtxHeaderSize;
const size_t kExpectedNumPaddingPackets =
(kPaddingBytesRequested + kMaxPaddingLength - 1) / kMaxPaddingLength;
size_t padding_bytes_generated = 0;
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
GeneratePadding(kPaddingBytesRequested);
EXPECT_EQ(padding_packets.size(), kExpectedNumPaddingPackets);
for (auto& packet : padding_packets) {
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
EXPECT_EQ(packet->Ssrc(), kSsrc);
EXPECT_EQ(packet->payload_size(), 0u);
EXPECT_GT(packet->padding_size(), 0u);
padding_bytes_generated += packet->padding_size();
EXPECT_TRUE(packet->HasExtension<TransportSequenceNumber>());
EXPECT_TRUE(packet->HasExtension<AbsoluteSendTime>());
EXPECT_TRUE(packet->HasExtension<TransmissionOffset>());
}
EXPECT_EQ(padding_bytes_generated,
kExpectedNumPaddingPackets * kMaxPaddingLength);
}
TEST_F(RtpSenderTest, SupportsPadding) {
bool kSendingMediaStats[] = {true, false};
bool kEnableRedundantPayloads[] = {true, false};
absl::string_view kBweExtensionUris[] = {
TransportSequenceNumber::Uri(), TransportSequenceNumberV2::Uri(),
AbsoluteSendTime::Uri(), TransmissionOffset::Uri()};
const int kExtensionsId = 7;
for (bool sending_media : kSendingMediaStats) {
rtp_sender_->SetSendingMediaStatus(sending_media);
for (bool redundant_payloads : kEnableRedundantPayloads) {
int rtx_mode = kRtxRetransmitted;
if (redundant_payloads) {
rtx_mode |= kRtxRedundantPayloads;
}
rtp_sender_->SetRtxPayloadType(kRtxPayload, kPayload);
rtp_sender_->SetRtxStatus(rtx_mode);
for (auto extension_uri : kBweExtensionUris) {
EXPECT_FALSE(rtp_sender_->SupportsPadding());
rtp_sender_->RegisterRtpHeaderExtension(extension_uri, kExtensionsId);
if (!sending_media) {
EXPECT_FALSE(rtp_sender_->SupportsPadding());
} else {
EXPECT_TRUE(rtp_sender_->SupportsPadding());
if (redundant_payloads) {
EXPECT_TRUE(rtp_sender_->SupportsRtxPayloadPadding());
} else {
EXPECT_FALSE(rtp_sender_->SupportsRtxPayloadPadding());
}
}
rtp_sender_->DeregisterRtpHeaderExtension(extension_uri);
EXPECT_FALSE(rtp_sender_->SupportsPadding());
}
}
}
}
TEST_F(RtpSenderTest, SetsCaptureTimeOnRtxRetransmissions) {
EnableRtx();
// Put a packet in the packet history, with current time as capture time.
const Timestamp start_time = env_.clock().CurrentTime();
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, kMarkerBit, /*rtp_timestamp=*/0,
/*capture_time=*/start_time);
packet->set_allow_retransmission(true);
sequencer_->Sequence(*packet);
packet_history_->PutRtpPacket(std::move(packet), start_time);
// Advance time, request an RTX retransmission. Capture timestamp should be
// preserved.
time_controller_.AdvanceTime(TimeDelta::Millis(10));
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(
Property(&RtpPacketToSend::capture_time, start_time)))));
EXPECT_GT(rtp_sender_->ReSendPacket(kSeqNum), 0);
}
TEST_F(RtpSenderTest, IgnoresNackAfterDisablingMedia) {
const TimeDelta kRtt = TimeDelta::Millis(10);
EnableRtx();
packet_history_->SetRtt(kRtt);
// Put a packet in the history.
const Timestamp start_time = env_.clock().CurrentTime();
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, kMarkerBit, 0, /*capture_time=*/start_time);
packet->set_allow_retransmission(true);
sequencer_->Sequence(*packet);
packet_history_->PutRtpPacket(std::move(packet), start_time);
// Disable media sending and try to retransmit the packet, it should fail.
rtp_sender_->SetSendingMediaStatus(false);
time_controller_.AdvanceTime(kRtt);
EXPECT_LT(rtp_sender_->ReSendPacket(kSeqNum), 0);
}
TEST_F(RtpSenderTest, DoesntFecProtectRetransmissions) {
// Set up retranmission without RTX, so that a plain copy of the old packet is
// re-sent instead.
const TimeDelta kRtt = TimeDelta::Millis(10);
rtp_sender_->SetSendingMediaStatus(true);
rtp_sender_->SetRtxStatus(kRtxOff);
packet_history_->SetStorePacketsStatus(
RtpPacketHistory::StorageMode::kStoreAndCull, 10);
packet_history_->SetRtt(kRtt);
// Put a fec protected packet in the history.
const Timestamp start_time = env_.clock().CurrentTime();
std::unique_ptr<RtpPacketToSend> packet =
BuildRtpPacket(kPayload, kMarkerBit, 0, start_time);
packet->set_allow_retransmission(true);
packet->set_fec_protect_packet(true);
sequencer_->Sequence(*packet);
packet_history_->PutRtpPacket(std::move(packet), start_time);
// Re-send packet, the retransmitted packet should not have the FEC protection
// flag set.
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(ElementsAre(Pointee(
Property(&RtpPacketToSend::fec_protect_packet, false)))));
time_controller_.AdvanceTime(kRtt);
EXPECT_GT(rtp_sender_->ReSendPacket(kSeqNum), 0);
}
TEST_F(RtpSenderTest, MarksPacketsWithKeyframeStatus) {
RTPSenderVideo::Config video_config;
video_config.clock = &env_.clock();
video_config.rtp_sender = rtp_sender_.get();
video_config.field_trials = &env_.field_trials();
RTPSenderVideo rtp_sender_video(video_config);
const uint8_t kPayloadType = 127;
const std::optional<VideoCodecType> kCodecType =
VideoCodecType::kVideoCodecGeneric;
const uint32_t kCaptureTimeMsToRtpTimestamp = 90; // 90 kHz clock
{
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(Each(
Pointee(Property(&RtpPacketToSend::is_key_frame, true)))))
.Times(AtLeast(1));
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameKey;
Timestamp capture_time = env_.clock().CurrentTime();
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType,
capture_time.ms() * kCaptureTimeMsToRtpTimestamp, capture_time,
kPayloadData, sizeof(kPayloadData), video_header,
kDefaultExpectedRetransmissionTime, {}));
time_controller_.AdvanceTime(TimeDelta::Millis(33));
}
{
EXPECT_CALL(mock_paced_sender_,
EnqueuePackets(Each(
Pointee(Property(&RtpPacketToSend::is_key_frame, false)))))
.Times(AtLeast(1));
RTPVideoHeader video_header;
video_header.frame_type = VideoFrameType::kVideoFrameDelta;
Timestamp capture_time = env_.clock().CurrentTime();
EXPECT_TRUE(rtp_sender_video.SendVideo(
kPayloadType, kCodecType,
capture_time.ms() * kCaptureTimeMsToRtpTimestamp, capture_time,
kPayloadData, sizeof(kPayloadData), video_header,
kDefaultExpectedRetransmissionTime, {}));
time_controller_.AdvanceTime(TimeDelta::Millis(33));
}
}
} // namespace webrtc