Optimizations and refactoring of the APM 3-band split filter
This CL refactors and optimizes the 3-band split-filter in APM, which
is a very computationally complex component.
Beyond optimizing the code, the filter coefficients are also quantized
to avoid denormals.
The changes reduces the complexity of the split filter by about 30-50%.
The CL has been tested for bitexactness on a number of aecdump
recordings.
(the CL also removes the now unused code for the sparse_fir_filter)
Bug: webrtc:6181
Change-Id: If45f8d1f189c6812ccb03721156c77eb68181211
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168189
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30592}
diff --git a/common_audio/BUILD.gn b/common_audio/BUILD.gn
index 48bd906..6c89bf2 100644
--- a/common_audio/BUILD.gn
+++ b/common_audio/BUILD.gn
@@ -32,8 +32,6 @@
"resampler/sinc_resampler.cc",
"smoothing_filter.cc",
"smoothing_filter.h",
- "sparse_fir_filter.cc",
- "sparse_fir_filter.h",
"vad/include/vad.h",
"vad/vad.cc",
"wav_file.cc",
@@ -47,6 +45,7 @@
deps = [
":common_audio_c",
":sinc_resampler",
+ "../api:array_view",
"../rtc_base:checks",
"../rtc_base:gtest_prod",
"../rtc_base:rtc_base_approved",
@@ -331,7 +330,6 @@
"signal_processing/real_fft_unittest.cc",
"signal_processing/signal_processing_unittest.cc",
"smoothing_filter_unittest.cc",
- "sparse_fir_filter_unittest.cc",
"vad/vad_core_unittest.cc",
"vad/vad_filterbank_unittest.cc",
"vad/vad_gmm_unittest.cc",
diff --git a/common_audio/channel_buffer.h b/common_audio/channel_buffer.h
index dc44369..f027080 100644
--- a/common_audio/channel_buffer.h
+++ b/common_audio/channel_buffer.h
@@ -14,7 +14,9 @@
#include <string.h>
#include <memory>
+#include <vector>
+#include "api/array_view.h"
#include "common_audio/include/audio_util.h"
#include "rtc_base/checks.h"
#include "rtc_base/gtest_prod_util.h"
@@ -48,40 +50,60 @@
num_frames_per_band_(num_frames / num_bands),
num_allocated_channels_(num_channels),
num_channels_(num_channels),
- num_bands_(num_bands) {
- for (size_t i = 0; i < num_allocated_channels_; ++i) {
- for (size_t j = 0; j < num_bands_; ++j) {
- channels_[j * num_allocated_channels_ + i] =
- &data_[i * num_frames_ + j * num_frames_per_band_];
- bands_[i * num_bands_ + j] = channels_[j * num_allocated_channels_ + i];
+ num_bands_(num_bands),
+ bands_view_(num_allocated_channels_,
+ std::vector<rtc::ArrayView<T>>(num_bands_)),
+ channels_view_(
+ num_bands_,
+ std::vector<rtc::ArrayView<T>>(num_allocated_channels_)) {
+ // Temporarily cast away const_ness to allow populating the array views.
+ auto* bands_view =
+ const_cast<std::vector<std::vector<rtc::ArrayView<T>>>*>(&bands_view_);
+ auto* channels_view =
+ const_cast<std::vector<std::vector<rtc::ArrayView<T>>>*>(
+ &channels_view_);
+
+ for (size_t ch = 0; ch < num_allocated_channels_; ++ch) {
+ for (size_t band = 0; band < num_bands_; ++band) {
+ (*channels_view)[band][ch] = rtc::ArrayView<T>(
+ &data_[ch * num_frames_ + band * num_frames_per_band_],
+ num_frames_per_band_);
+ (*bands_view)[ch][band] = channels_view_[band][ch];
+ channels_[band * num_allocated_channels_ + ch] =
+ channels_view_[band][ch].data();
+ bands_[ch * num_bands_ + band] =
+ channels_[band * num_allocated_channels_ + ch];
}
}
}
- // Returns a pointer array to the full-band channels (or lower band channels).
- // Usage:
- // channels()[channel][sample].
- // Where:
- // 0 <= channel < |num_allocated_channels_|
- // 0 <= sample < |num_frames_|
- T* const* channels() { return channels(0); }
- const T* const* channels() const { return channels(0); }
-
- // Returns a pointer array to the channels for a specific band.
- // Usage:
- // channels(band)[channel][sample].
+ // Returns a pointer array to the channels.
+ // If band is explicitly specificed, the channels for a specific band are
+ // returned and the usage becomes: channels(band)[channel][sample].
// Where:
// 0 <= band < |num_bands_|
// 0 <= channel < |num_allocated_channels_|
// 0 <= sample < |num_frames_per_band_|
- const T* const* channels(size_t band) const {
+
+ // If band is not explicitly specified, the full-band channels (or lower band
+ // channels) are returned and the usage becomes: channels()[channel][sample].
+ // Where:
+ // 0 <= channel < |num_allocated_channels_|
+ // 0 <= sample < |num_frames_|
+ const T* const* channels(size_t band = 0) const {
RTC_DCHECK_LT(band, num_bands_);
return &channels_[band * num_allocated_channels_];
}
- T* const* channels(size_t band) {
+ T* const* channels(size_t band = 0) {
const ChannelBuffer<T>* t = this;
return const_cast<T* const*>(t->channels(band));
}
+ rtc::ArrayView<const rtc::ArrayView<T>> channels_view(size_t band = 0) {
+ return channels_view_[band];
+ }
+ rtc::ArrayView<const rtc::ArrayView<T>> channels_view(size_t band = 0) const {
+ return channels_view_[band];
+ }
// Returns a pointer array to the bands for a specific channel.
// Usage:
@@ -100,6 +122,13 @@
return const_cast<T* const*>(t->bands(channel));
}
+ rtc::ArrayView<const rtc::ArrayView<T>> bands_view(size_t channel) {
+ return bands_view_[channel];
+ }
+ rtc::ArrayView<const rtc::ArrayView<T>> bands_view(size_t channel) const {
+ return bands_view_[channel];
+ }
+
// Sets the |slice| pointers to the |start_frame| position for each channel.
// Returns |slice| for convenience.
const T* const* Slice(T** slice, size_t start_frame) const {
@@ -140,6 +169,8 @@
// Number of channels the user sees.
size_t num_channels_;
const size_t num_bands_;
+ const std::vector<std::vector<rtc::ArrayView<T>>> bands_view_;
+ const std::vector<std::vector<rtc::ArrayView<T>>> channels_view_;
};
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
diff --git a/common_audio/sparse_fir_filter.cc b/common_audio/sparse_fir_filter.cc
deleted file mode 100644
index 772eb82..0000000
--- a/common_audio/sparse_fir_filter.cc
+++ /dev/null
@@ -1,60 +0,0 @@
-/*
- * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "common_audio/sparse_fir_filter.h"
-
-#include "rtc_base/checks.h"
-
-namespace webrtc {
-
-SparseFIRFilter::SparseFIRFilter(const float* nonzero_coeffs,
- size_t num_nonzero_coeffs,
- size_t sparsity,
- size_t offset)
- : sparsity_(sparsity),
- offset_(offset),
- nonzero_coeffs_(nonzero_coeffs, nonzero_coeffs + num_nonzero_coeffs),
- state_(sparsity_ * (num_nonzero_coeffs - 1) + offset_, 0.f) {
- RTC_CHECK_GE(num_nonzero_coeffs, 1);
- RTC_CHECK_GE(sparsity, 1);
-}
-
-SparseFIRFilter::~SparseFIRFilter() = default;
-
-void SparseFIRFilter::Filter(const float* in, size_t length, float* out) {
- // Convolves the input signal |in| with the filter kernel |nonzero_coeffs_|
- // taking into account the previous state.
- for (size_t i = 0; i < length; ++i) {
- out[i] = 0.f;
- size_t j;
- for (j = 0; i >= j * sparsity_ + offset_ && j < nonzero_coeffs_.size();
- ++j) {
- out[i] += in[i - j * sparsity_ - offset_] * nonzero_coeffs_[j];
- }
- for (; j < nonzero_coeffs_.size(); ++j) {
- out[i] += state_[i + (nonzero_coeffs_.size() - j - 1) * sparsity_] *
- nonzero_coeffs_[j];
- }
- }
-
- // Update current state.
- if (!state_.empty()) {
- if (length >= state_.size()) {
- std::memcpy(&state_[0], &in[length - state_.size()],
- state_.size() * sizeof(*in));
- } else {
- std::memmove(&state_[0], &state_[length],
- (state_.size() - length) * sizeof(state_[0]));
- std::memcpy(&state_[state_.size() - length], in, length * sizeof(*in));
- }
- }
-}
-
-} // namespace webrtc
diff --git a/common_audio/sparse_fir_filter.h b/common_audio/sparse_fir_filter.h
deleted file mode 100644
index 5197a8e..0000000
--- a/common_audio/sparse_fir_filter.h
+++ /dev/null
@@ -1,53 +0,0 @@
-/*
- * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#ifndef COMMON_AUDIO_SPARSE_FIR_FILTER_H_
-#define COMMON_AUDIO_SPARSE_FIR_FILTER_H_
-
-#include <cstring>
-#include <vector>
-
-#include "rtc_base/constructor_magic.h"
-
-namespace webrtc {
-
-// A Finite Impulse Response filter implementation which takes advantage of a
-// sparse structure with uniformly distributed non-zero coefficients.
-class SparseFIRFilter final {
- public:
- // |num_nonzero_coeffs| is the number of non-zero coefficients,
- // |nonzero_coeffs|. They are assumed to be uniformly distributed every
- // |sparsity| samples and with an initial |offset|. The rest of the filter
- // coefficients will be assumed zeros. For example, with sparsity = 3, and
- // offset = 1 the filter coefficients will be:
- // B = [0 coeffs[0] 0 0 coeffs[1] 0 0 coeffs[2] ... ]
- // All initial state values will be zeros.
- SparseFIRFilter(const float* nonzero_coeffs,
- size_t num_nonzero_coeffs,
- size_t sparsity,
- size_t offset);
- ~SparseFIRFilter();
-
- // Filters the |in| data supplied.
- // |out| must be previously allocated and it must be at least of |length|.
- void Filter(const float* in, size_t length, float* out);
-
- private:
- const size_t sparsity_;
- const size_t offset_;
- const std::vector<float> nonzero_coeffs_;
- std::vector<float> state_;
-
- RTC_DISALLOW_COPY_AND_ASSIGN(SparseFIRFilter);
-};
-
-} // namespace webrtc
-
-#endif // COMMON_AUDIO_SPARSE_FIR_FILTER_H_
diff --git a/common_audio/sparse_fir_filter_unittest.cc b/common_audio/sparse_fir_filter_unittest.cc
deleted file mode 100644
index 5dc7b6d..0000000
--- a/common_audio/sparse_fir_filter_unittest.cc
+++ /dev/null
@@ -1,219 +0,0 @@
-/*
- * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "common_audio/sparse_fir_filter.h"
-
-#include <memory>
-
-#include "common_audio/fir_filter.h"
-#include "common_audio/fir_filter_factory.h"
-#include "rtc_base/arraysize.h"
-#include "test/gtest.h"
-
-namespace webrtc {
-namespace {
-
-static const float kCoeffs[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f};
-static const float kInput[] = {1.f, 2.f, 3.f, 4.f, 5.f,
- 6.f, 7.f, 8.f, 9.f, 10.f};
-
-template <size_t N>
-void VerifyOutput(const float (&expected_output)[N], const float (&output)[N]) {
- EXPECT_EQ(0, memcmp(expected_output, output, sizeof(output)));
-}
-
-} // namespace
-
-TEST(SparseFIRFilterTest, FilterAsIdentity) {
- const float kCoeff = 1.f;
- const size_t kNumCoeff = 1;
- const size_t kSparsity = 3;
- const size_t kOffset = 0;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
- filter.Filter(kInput, arraysize(kInput), output);
- VerifyOutput(kInput, output);
-}
-
-TEST(SparseFIRFilterTest, SameOutputForScalarCoefficientAndDifferentSparsity) {
- const float kCoeff = 2.f;
- const size_t kNumCoeff = 1;
- const size_t kLowSparsity = 1;
- const size_t kHighSparsity = 7;
- const size_t kOffset = 0;
- float low_sparsity_output[arraysize(kInput)];
- float high_sparsity_output[arraysize(kInput)];
- SparseFIRFilter low_sparsity_filter(&kCoeff, kNumCoeff, kLowSparsity,
- kOffset);
- SparseFIRFilter high_sparsity_filter(&kCoeff, kNumCoeff, kHighSparsity,
- kOffset);
- low_sparsity_filter.Filter(kInput, arraysize(kInput), low_sparsity_output);
- high_sparsity_filter.Filter(kInput, arraysize(kInput), high_sparsity_output);
- VerifyOutput(low_sparsity_output, high_sparsity_output);
-}
-
-TEST(SparseFIRFilterTest, FilterUsedAsScalarMultiplication) {
- const float kCoeff = 5.f;
- const size_t kNumCoeff = 1;
- const size_t kSparsity = 5;
- const size_t kOffset = 0;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
- filter.Filter(kInput, arraysize(kInput), output);
- EXPECT_FLOAT_EQ(5.f, output[0]);
- EXPECT_FLOAT_EQ(20.f, output[3]);
- EXPECT_FLOAT_EQ(25.f, output[4]);
- EXPECT_FLOAT_EQ(50.f, output[arraysize(kInput) - 1]);
-}
-
-TEST(SparseFIRFilterTest, FilterUsedAsInputShifting) {
- const float kCoeff = 1.f;
- const size_t kNumCoeff = 1;
- const size_t kSparsity = 1;
- const size_t kOffset = 4;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
- filter.Filter(kInput, arraysize(kInput), output);
- EXPECT_FLOAT_EQ(0.f, output[0]);
- EXPECT_FLOAT_EQ(0.f, output[3]);
- EXPECT_FLOAT_EQ(1.f, output[4]);
- EXPECT_FLOAT_EQ(2.f, output[5]);
- EXPECT_FLOAT_EQ(6.f, output[arraysize(kInput) - 1]);
-}
-
-TEST(SparseFIRFilterTest, FilterUsedAsArbitraryWeighting) {
- const size_t kSparsity = 2;
- const size_t kOffset = 1;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
- filter.Filter(kInput, arraysize(kInput), output);
- EXPECT_FLOAT_EQ(0.f, output[0]);
- EXPECT_FLOAT_EQ(0.9f, output[3]);
- EXPECT_FLOAT_EQ(1.4f, output[4]);
- EXPECT_FLOAT_EQ(2.4f, output[5]);
- EXPECT_FLOAT_EQ(8.61f, output[arraysize(kInput) - 1]);
-}
-
-TEST(SparseFIRFilterTest, FilterInLengthLesserOrEqualToCoefficientsLength) {
- const size_t kSparsity = 1;
- const size_t kOffset = 0;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
- filter.Filter(kInput, 2, output);
- EXPECT_FLOAT_EQ(0.2f, output[0]);
- EXPECT_FLOAT_EQ(0.7f, output[1]);
-}
-
-TEST(SparseFIRFilterTest, MultipleFilterCalls) {
- const size_t kSparsity = 1;
- const size_t kOffset = 0;
- float output[arraysize(kInput)];
- SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
- filter.Filter(kInput, 2, output);
- EXPECT_FLOAT_EQ(0.2f, output[0]);
- EXPECT_FLOAT_EQ(0.7f, output[1]);
- filter.Filter(kInput, 2, output);
- EXPECT_FLOAT_EQ(1.3f, output[0]);
- EXPECT_FLOAT_EQ(2.4f, output[1]);
- filter.Filter(kInput, 2, output);
- EXPECT_FLOAT_EQ(2.81f, output[0]);
- EXPECT_FLOAT_EQ(2.62f, output[1]);
- filter.Filter(kInput, 2, output);
- EXPECT_FLOAT_EQ(2.81f, output[0]);
- EXPECT_FLOAT_EQ(2.62f, output[1]);
- filter.Filter(&kInput[3], 3, output);
- EXPECT_FLOAT_EQ(3.41f, output[0]);
- EXPECT_FLOAT_EQ(4.12f, output[1]);
- EXPECT_FLOAT_EQ(6.21f, output[2]);
- filter.Filter(&kInput[3], 3, output);
- EXPECT_FLOAT_EQ(8.12f, output[0]);
- EXPECT_FLOAT_EQ(9.14f, output[1]);
- EXPECT_FLOAT_EQ(9.45f, output[2]);
-}
-
-TEST(SparseFIRFilterTest, VerifySampleBasedVsBlockBasedFiltering) {
- const size_t kSparsity = 3;
- const size_t kOffset = 1;
- float output_block_based[arraysize(kInput)];
- SparseFIRFilter filter_block(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
- filter_block.Filter(kInput, arraysize(kInput), output_block_based);
- float output_sample_based[arraysize(kInput)];
- SparseFIRFilter filter_sample(kCoeffs, arraysize(kCoeffs), kSparsity,
- kOffset);
- for (size_t i = 0; i < arraysize(kInput); ++i)
- filter_sample.Filter(&kInput[i], 1, &output_sample_based[i]);
- VerifyOutput(output_block_based, output_sample_based);
-}
-
-TEST(SparseFIRFilterTest, SimpleHighPassFilter) {
- const size_t kSparsity = 2;
- const size_t kOffset = 2;
- const float kHPCoeffs[] = {1.f, -1.f};
- const float kConstantInput[] = {1.f, 1.f, 1.f, 1.f, 1.f,
- 1.f, 1.f, 1.f, 1.f, 1.f};
- float output[arraysize(kConstantInput)];
- SparseFIRFilter filter(kHPCoeffs, arraysize(kHPCoeffs), kSparsity, kOffset);
- filter.Filter(kConstantInput, arraysize(kConstantInput), output);
- EXPECT_FLOAT_EQ(0.f, output[0]);
- EXPECT_FLOAT_EQ(0.f, output[1]);
- EXPECT_FLOAT_EQ(1.f, output[2]);
- EXPECT_FLOAT_EQ(1.f, output[3]);
- for (size_t i = kSparsity + kOffset; i < arraysize(kConstantInput); ++i)
- EXPECT_FLOAT_EQ(0.f, output[i]);
-}
-
-TEST(SparseFIRFilterTest, SimpleLowPassFilter) {
- const size_t kSparsity = 2;
- const size_t kOffset = 2;
- const float kLPCoeffs[] = {1.f, 1.f};
- const float kHighFrequencyInput[] = {1.f, 1.f, -1.f, -1.f, 1.f,
- 1.f, -1.f, -1.f, 1.f, 1.f};
- float output[arraysize(kHighFrequencyInput)];
- SparseFIRFilter filter(kLPCoeffs, arraysize(kLPCoeffs), kSparsity, kOffset);
- filter.Filter(kHighFrequencyInput, arraysize(kHighFrequencyInput), output);
- EXPECT_FLOAT_EQ(0.f, output[0]);
- EXPECT_FLOAT_EQ(0.f, output[1]);
- EXPECT_FLOAT_EQ(1.f, output[2]);
- EXPECT_FLOAT_EQ(1.f, output[3]);
- for (size_t i = kSparsity + kOffset; i < arraysize(kHighFrequencyInput); ++i)
- EXPECT_FLOAT_EQ(0.f, output[i]);
-}
-
-TEST(SparseFIRFilterTest, SameOutputWhenSwappedCoefficientsAndInput) {
- const size_t kSparsity = 1;
- const size_t kOffset = 0;
- float output[arraysize(kCoeffs)];
- float output_swapped[arraysize(kCoeffs)];
- SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
- // Use arraysize(kCoeffs) for in_length to get same-length outputs.
- filter.Filter(kInput, arraysize(kCoeffs), output);
- SparseFIRFilter filter_swapped(kInput, arraysize(kCoeffs), kSparsity,
- kOffset);
- filter_swapped.Filter(kCoeffs, arraysize(kCoeffs), output_swapped);
- VerifyOutput(output, output_swapped);
-}
-
-TEST(SparseFIRFilterTest, SameOutputAsFIRFilterWhenSparsityOneAndOffsetZero) {
- const size_t kSparsity = 1;
- const size_t kOffset = 0;
- float output[arraysize(kInput)];
- float sparse_output[arraysize(kInput)];
- std::unique_ptr<FIRFilter> filter(
- CreateFirFilter(kCoeffs, arraysize(kCoeffs), arraysize(kInput)));
- SparseFIRFilter sparse_filter(kCoeffs, arraysize(kCoeffs), kSparsity,
- kOffset);
- filter->Filter(kInput, arraysize(kInput), output);
- sparse_filter.Filter(kInput, arraysize(kInput), sparse_output);
- for (size_t i = 0; i < arraysize(kInput); ++i) {
- EXPECT_FLOAT_EQ(output[i], sparse_output[i]);
- }
-}
-
-} // namespace webrtc
diff --git a/modules/audio_processing/BUILD.gn b/modules/audio_processing/BUILD.gn
index 6215ab5..185e4f7 100644
--- a/modules/audio_processing/BUILD.gn
+++ b/modules/audio_processing/BUILD.gn
@@ -73,6 +73,7 @@
deps = [
":api",
+ "../../api:array_view",
"../../api/audio:audio_frame_api",
"../../common_audio",
"../../common_audio:common_audio_c",
diff --git a/modules/audio_processing/splitting_filter.cc b/modules/audio_processing/splitting_filter.cc
index 6289628..d47090b 100644
--- a/modules/audio_processing/splitting_filter.cc
+++ b/modules/audio_processing/splitting_filter.cc
@@ -12,6 +12,7 @@
#include <array>
+#include "api/array_view.h"
#include "common_audio/channel_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "rtc_base/checks.h"
@@ -27,16 +28,10 @@
SplittingFilter::SplittingFilter(size_t num_channels,
size_t num_bands,
size_t num_frames)
- : num_bands_(num_bands) {
+ : num_bands_(num_bands),
+ two_bands_states_(num_bands_ == 2 ? num_channels : 0),
+ three_band_filter_banks_(num_bands_ == 3 ? num_channels : 0) {
RTC_CHECK(num_bands_ == 2 || num_bands_ == 3);
- if (num_bands_ == 2) {
- two_bands_states_.resize(num_channels);
- } else if (num_bands_ == 3) {
- for (size_t i = 0; i < num_channels; ++i) {
- three_band_filter_banks_.push_back(std::unique_ptr<ThreeBandFilterBank>(
- new ThreeBandFilterBank(num_frames)));
- }
- }
}
SplittingFilter::~SplittingFilter() = default;
@@ -105,18 +100,44 @@
void SplittingFilter::ThreeBandsAnalysis(const ChannelBuffer<float>* data,
ChannelBuffer<float>* bands) {
RTC_DCHECK_EQ(three_band_filter_banks_.size(), data->num_channels());
+ RTC_DCHECK_LE(data->num_channels(), three_band_filter_banks_.size());
+ RTC_DCHECK_LE(data->num_channels(), bands->num_channels());
+ RTC_DCHECK_EQ(data->num_frames(), ThreeBandFilterBank::kFullBandSize);
+ RTC_DCHECK_EQ(bands->num_frames(), ThreeBandFilterBank::kFullBandSize);
+ RTC_DCHECK_EQ(bands->num_bands(), ThreeBandFilterBank::kNumBands);
+ RTC_DCHECK_EQ(bands->num_frames_per_band(),
+ ThreeBandFilterBank::kSplitBandSize);
+
for (size_t i = 0; i < three_band_filter_banks_.size(); ++i) {
- three_band_filter_banks_[i]->Analysis(data->channels()[i],
- data->num_frames(), bands->bands(i));
+ three_band_filter_banks_[i].Analysis(
+ rtc::ArrayView<const float, ThreeBandFilterBank::kFullBandSize>(
+ data->channels_view()[i].data(),
+ ThreeBandFilterBank::kFullBandSize),
+ rtc::ArrayView<const rtc::ArrayView<float>,
+ ThreeBandFilterBank::kNumBands>(
+ bands->bands_view(i).data(), ThreeBandFilterBank::kNumBands));
}
}
void SplittingFilter::ThreeBandsSynthesis(const ChannelBuffer<float>* bands,
ChannelBuffer<float>* data) {
RTC_DCHECK_LE(data->num_channels(), three_band_filter_banks_.size());
+ RTC_DCHECK_LE(data->num_channels(), bands->num_channels());
+ RTC_DCHECK_LE(data->num_channels(), three_band_filter_banks_.size());
+ RTC_DCHECK_EQ(data->num_frames(), ThreeBandFilterBank::kFullBandSize);
+ RTC_DCHECK_EQ(bands->num_frames(), ThreeBandFilterBank::kFullBandSize);
+ RTC_DCHECK_EQ(bands->num_bands(), ThreeBandFilterBank::kNumBands);
+ RTC_DCHECK_EQ(bands->num_frames_per_band(),
+ ThreeBandFilterBank::kSplitBandSize);
+
for (size_t i = 0; i < data->num_channels(); ++i) {
- three_band_filter_banks_[i]->Synthesis(
- bands->bands(i), bands->num_frames_per_band(), data->channels()[i]);
+ three_band_filter_banks_[i].Synthesis(
+ rtc::ArrayView<const rtc::ArrayView<float>,
+ ThreeBandFilterBank::kNumBands>(
+ bands->bands_view(i).data(), ThreeBandFilterBank::kNumBands),
+ rtc::ArrayView<float, ThreeBandFilterBank::kFullBandSize>(
+ data->channels_view()[i].data(),
+ ThreeBandFilterBank::kFullBandSize));
}
}
diff --git a/modules/audio_processing/splitting_filter.h b/modules/audio_processing/splitting_filter.h
index 3b33c35..e578dd0 100644
--- a/modules/audio_processing/splitting_filter.h
+++ b/modules/audio_processing/splitting_filter.h
@@ -64,7 +64,7 @@
const size_t num_bands_;
std::vector<TwoBandsStates> two_bands_states_;
- std::vector<std::unique_ptr<ThreeBandFilterBank>> three_band_filter_banks_;
+ std::vector<ThreeBandFilterBank> three_band_filter_banks_;
};
} // namespace webrtc
diff --git a/modules/audio_processing/three_band_filter_bank.cc b/modules/audio_processing/three_band_filter_bank.cc
index dbbfc28..2a7d272 100644
--- a/modules/audio_processing/three_band_filter_bank.cc
+++ b/modules/audio_processing/three_band_filter_bank.cc
@@ -30,37 +30,33 @@
//
// A similar logic can be applied to the synthesis stage.
-// MSVC++ requires this to be set before any other includes to get M_PI.
-#define _USE_MATH_DEFINES
-
#include "modules/audio_processing/three_band_filter_bank.h"
-#include <cmath>
+#include <array>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
-const size_t kNumBands = 3;
-const size_t kSparsity = 4;
-
-// Factors to take into account when choosing |kNumCoeffs|:
-// 1. Higher |kNumCoeffs|, means faster transition, which ensures less
+// Factors to take into account when choosing |kFilterSize|:
+// 1. Higher |kFilterSize|, means faster transition, which ensures less
// aliasing. This is especially important when there is non-linear
// processing between the splitting and merging.
// 2. The delay that this filter bank introduces is
-// |kNumBands| * |kSparsity| * |kNumCoeffs| / 2, so it increases linearly
-// with |kNumCoeffs|.
-// 3. The computation complexity also increases linearly with |kNumCoeffs|.
-const size_t kNumCoeffs = 4;
+// |kNumBands| * |kSparsity| * |kFilterSize| / 2, so it increases linearly
+// with |kFilterSize|.
+// 3. The computation complexity also increases linearly with |kFilterSize|.
-// The Matlab code to generate these |kLowpassCoeffs| is:
+// The Matlab code to generate these |kFilterCoeffs| is:
//
-// N = kNumBands * kSparsity * kNumCoeffs - 1;
+// N = kNumBands * kSparsity * kFilterSize - 1;
// h = fir1(N, 1 / (2 * kNumBands), kaiser(N + 1, 3.5));
-// reshape(h, kNumBands * kSparsity, kNumCoeffs);
+// reshape(h, kNumBands * kSparsity, kFilterSize);
//
+// The code below uses the values of kFilterSize, kNumBands and kSparsity
+// specified in the header.
+
// Because the total bandwidth of the lower and higher band is double the middle
// one (because of the spectrum parity), the low-pass prototype is half the
// bandwidth of 1 / (2 * |kNumBands|) and is then shifted with cosine modulation
@@ -68,39 +64,84 @@
// A Kaiser window is used because of its flexibility and the alpha is set to
// 3.5, since that sets a stop band attenuation of 40dB ensuring a fast
// transition.
-const float kLowpassCoeffs[kNumBands * kSparsity][kNumCoeffs] = {
- {-0.00047749f, -0.00496888f, +0.16547118f, +0.00425496f},
- {-0.00173287f, -0.01585778f, +0.14989004f, +0.00994113f},
- {-0.00304815f, -0.02536082f, +0.12154542f, +0.01157993f},
- {-0.00383509f, -0.02982767f, +0.08543175f, +0.00983212f},
- {-0.00346946f, -0.02587886f, +0.04760441f, +0.00607594f},
- {-0.00154717f, -0.01136076f, +0.01387458f, +0.00186353f},
- {+0.00186353f, +0.01387458f, -0.01136076f, -0.00154717f},
- {+0.00607594f, +0.04760441f, -0.02587886f, -0.00346946f},
- {+0.00983212f, +0.08543175f, -0.02982767f, -0.00383509f},
- {+0.01157993f, +0.12154542f, -0.02536082f, -0.00304815f},
- {+0.00994113f, +0.14989004f, -0.01585778f, -0.00173287f},
- {+0.00425496f, +0.16547118f, -0.00496888f, -0.00047749f}};
-// Downsamples |in| into |out|, taking one every |kNumbands| starting from
-// |offset|. |split_length| is the |out| length. |in| has to be at least
-// |kNumBands| * |split_length| long.
-void Downsample(const float* in,
- size_t split_length,
- size_t offset,
- float* out) {
- for (size_t i = 0; i < split_length; ++i) {
- out[i] = in[kNumBands * i + offset];
- }
-}
+constexpr int kSubSampling = ThreeBandFilterBank::kNumBands;
+constexpr int kDctSize = ThreeBandFilterBank::kNumBands;
+static_assert(ThreeBandFilterBank::kNumBands *
+ ThreeBandFilterBank::kSplitBandSize ==
+ ThreeBandFilterBank::kFullBandSize,
+ "The full band must be split in equally sized subbands");
-// Upsamples |in| into |out|, scaling by |kNumBands| and accumulating it every
-// |kNumBands| starting from |offset|. |split_length| is the |in| length. |out|
-// has to be at least |kNumBands| * |split_length| long.
-void Upsample(const float* in, size_t split_length, size_t offset, float* out) {
- for (size_t i = 0; i < split_length; ++i) {
- out[kNumBands * i + offset] += kNumBands * in[i];
+const float
+ kFilterCoeffs[ThreeBandFilterBank::kNumNonZeroFilters][kFilterSize] = {
+ {-0.00047749f, -0.00496888f, +0.16547118f, +0.00425496f},
+ {-0.00173287f, -0.01585778f, +0.14989004f, +0.00994113f},
+ {-0.00304815f, -0.02536082f, +0.12154542f, +0.01157993f},
+ {-0.00346946f, -0.02587886f, +0.04760441f, +0.00607594f},
+ {-0.00154717f, -0.01136076f, +0.01387458f, +0.00186353f},
+ {+0.00186353f, +0.01387458f, -0.01136076f, -0.00154717f},
+ {+0.00607594f, +0.04760441f, -0.02587886f, -0.00346946f},
+ {+0.00983212f, +0.08543175f, -0.02982767f, -0.00383509f},
+ {+0.00994113f, +0.14989004f, -0.01585778f, -0.00173287f},
+ {+0.00425496f, +0.16547118f, -0.00496888f, -0.00047749f}};
+
+constexpr int kZeroFilterIndex1 = 3;
+constexpr int kZeroFilterIndex2 = 9;
+
+const float kDctModulation[ThreeBandFilterBank::kNumNonZeroFilters][kDctSize] =
+ {{2.f, 2.f, 2.f},
+ {1.73205077f, 0.f, -1.73205077f},
+ {1.f, -2.f, 1.f},
+ {-1.f, 2.f, -1.f},
+ {-1.73205077f, 0.f, 1.73205077f},
+ {-2.f, -2.f, -2.f},
+ {-1.73205077f, 0.f, 1.73205077f},
+ {-1.f, 2.f, -1.f},
+ {1.f, -2.f, 1.f},
+ {1.73205077f, 0.f, -1.73205077f}};
+
+// Filters the input signal |in| with the filter |filter| using a shift by
+// |in_shift|, taking into account the previous state.
+void FilterCore(
+ rtc::ArrayView<const float, kFilterSize> filter,
+ rtc::ArrayView<const float, ThreeBandFilterBank::kSplitBandSize> in,
+ const int in_shift,
+ rtc::ArrayView<float, ThreeBandFilterBank::kSplitBandSize> out,
+ rtc::ArrayView<float, kMemorySize> state) {
+ constexpr int kMaxInShift = (kStride - 1);
+ RTC_DCHECK_GE(in_shift, 0);
+ RTC_DCHECK_LE(in_shift, kMaxInShift);
+ std::fill(out.begin(), out.end(), 0.f);
+
+ for (int k = 0; k < in_shift; ++k) {
+ for (int i = 0, j = kMemorySize + k - in_shift; i < kFilterSize;
+ ++i, j -= kStride) {
+ out[k] += state[j] * filter[i];
+ }
}
+
+ for (int k = in_shift, shift = 0; k < kFilterSize * kStride; ++k, ++shift) {
+ RTC_DCHECK_GE(shift, 0);
+ const int loop_limit = std::min(kFilterSize, 1 + (shift >> kStrideLog2));
+ for (int i = 0, j = shift; i < loop_limit; ++i, j -= kStride) {
+ out[k] += in[j] * filter[i];
+ }
+ for (int i = loop_limit, j = kMemorySize + shift - loop_limit * kStride;
+ i < kFilterSize; ++i, j -= kStride) {
+ out[k] += state[j] * filter[i];
+ }
+ }
+
+ for (int k = kFilterSize * kStride, shift = kFilterSize * kStride - in_shift;
+ k < ThreeBandFilterBank::kSplitBandSize; ++k, ++shift) {
+ for (int i = 0, j = shift; i < kFilterSize; ++i, j -= kStride) {
+ out[k] += in[j] * filter[i];
+ }
+ }
+
+ // Update current state.
+ std::copy(in.begin() + ThreeBandFilterBank::kSplitBandSize - kMemorySize,
+ in.end(), state.begin());
}
} // namespace
@@ -108,26 +149,15 @@
// Because the low-pass filter prototype has half bandwidth it is possible to
// use a DCT to shift it in both directions at the same time, to the center
// frequencies [1 / 12, 3 / 12, 5 / 12].
-ThreeBandFilterBank::ThreeBandFilterBank(size_t length)
- : in_buffer_(rtc::CheckedDivExact(length, kNumBands)),
- out_buffer_(in_buffer_.size()) {
- for (size_t i = 0; i < kSparsity; ++i) {
- for (size_t j = 0; j < kNumBands; ++j) {
- analysis_filters_.push_back(
- std::unique_ptr<SparseFIRFilter>(new SparseFIRFilter(
- kLowpassCoeffs[i * kNumBands + j], kNumCoeffs, kSparsity, i)));
- synthesis_filters_.push_back(
- std::unique_ptr<SparseFIRFilter>(new SparseFIRFilter(
- kLowpassCoeffs[i * kNumBands + j], kNumCoeffs, kSparsity, i)));
- }
- }
- dct_modulation_.resize(kNumBands * kSparsity);
- for (size_t i = 0; i < dct_modulation_.size(); ++i) {
- dct_modulation_[i].resize(kNumBands);
- for (size_t j = 0; j < kNumBands; ++j) {
- dct_modulation_[i][j] =
- 2.f * cos(2.f * M_PI * i * (2.f * j + 1.f) / dct_modulation_.size());
- }
+ThreeBandFilterBank::ThreeBandFilterBank() {
+ RTC_DCHECK_EQ(state_analysis_.size(), kNumNonZeroFilters);
+ RTC_DCHECK_EQ(state_synthesis_.size(), kNumNonZeroFilters);
+ for (int k = 0; k < kNumNonZeroFilters; ++k) {
+ RTC_DCHECK_EQ(state_analysis_[k].size(), kMemorySize);
+ RTC_DCHECK_EQ(state_synthesis_[k].size(), kMemorySize);
+
+ state_analysis_[k].fill(0.f);
+ state_synthesis_[k].fill(0.f);
}
}
@@ -139,20 +169,52 @@
// decomposition of the low-pass prototype filter and upsampled by a factor
// of |kSparsity|.
// 3. Modulating with cosines and accumulating to get the desired band.
-void ThreeBandFilterBank::Analysis(const float* in,
- size_t length,
- float* const* out) {
- RTC_CHECK_EQ(in_buffer_.size(), rtc::CheckedDivExact(length, kNumBands));
- for (size_t i = 0; i < kNumBands; ++i) {
- memset(out[i], 0, in_buffer_.size() * sizeof(*out[i]));
+void ThreeBandFilterBank::Analysis(
+ rtc::ArrayView<const float, kFullBandSize> in,
+ rtc::ArrayView<const rtc::ArrayView<float>, ThreeBandFilterBank::kNumBands>
+ out) {
+ // Initialize the output to zero.
+ for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
+ RTC_DCHECK_EQ(out[band].size(), kSplitBandSize);
+ std::fill(out[band].begin(), out[band].end(), 0);
}
- for (size_t i = 0; i < kNumBands; ++i) {
- Downsample(in, in_buffer_.size(), kNumBands - i - 1, &in_buffer_[0]);
- for (size_t j = 0; j < kSparsity; ++j) {
- const size_t offset = i + j * kNumBands;
- analysis_filters_[offset]->Filter(&in_buffer_[0], in_buffer_.size(),
- &out_buffer_[0]);
- DownModulate(&out_buffer_[0], out_buffer_.size(), offset, out);
+
+ for (int downsampling_index = 0; downsampling_index < kSubSampling;
+ ++downsampling_index) {
+ // Downsample to form the filter input.
+ std::array<float, kSplitBandSize> in_subsampled;
+ for (int k = 0; k < kSplitBandSize; ++k) {
+ in_subsampled[k] =
+ in[(kSubSampling - 1) - downsampling_index + kSubSampling * k];
+ }
+
+ for (int in_shift = 0; in_shift < kStride; ++in_shift) {
+ // Choose filter, skip zero filters.
+ const int index = downsampling_index + in_shift * kSubSampling;
+ if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) {
+ continue;
+ }
+ const int filter_index =
+ index < kZeroFilterIndex1
+ ? index
+ : (index < kZeroFilterIndex2 ? index - 1 : index - 2);
+
+ rtc::ArrayView<const float, kFilterSize> filter(
+ kFilterCoeffs[filter_index]);
+ rtc::ArrayView<const float, kDctSize> dct_modulation(
+ kDctModulation[filter_index]);
+ rtc::ArrayView<float, kMemorySize> state(state_analysis_[filter_index]);
+
+ // Filter.
+ std::array<float, kSplitBandSize> out_subsampled;
+ FilterCore(filter, in_subsampled, in_shift, out_subsampled, state);
+
+ // Band and modulate the output.
+ for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
+ for (int n = 0; n < kSplitBandSize; ++n) {
+ out[band][n] += dct_modulation[band] * out_subsampled[n];
+ }
+ }
}
}
}
@@ -163,49 +225,50 @@
// prototype filter upsampled by a factor of |kSparsity| and accumulating
// |kSparsity| signals with different delays.
// 3. Parallel to serial upsampling by a factor of |kNumBands|.
-void ThreeBandFilterBank::Synthesis(const float* const* in,
- size_t split_length,
- float* out) {
- RTC_CHECK_EQ(in_buffer_.size(), split_length);
- memset(out, 0, kNumBands * in_buffer_.size() * sizeof(*out));
- for (size_t i = 0; i < kNumBands; ++i) {
- for (size_t j = 0; j < kSparsity; ++j) {
- const size_t offset = i + j * kNumBands;
- UpModulate(in, in_buffer_.size(), offset, &in_buffer_[0]);
- synthesis_filters_[offset]->Filter(&in_buffer_[0], in_buffer_.size(),
- &out_buffer_[0]);
- Upsample(&out_buffer_[0], out_buffer_.size(), i, out);
- }
- }
-}
+void ThreeBandFilterBank::Synthesis(
+ rtc::ArrayView<const rtc::ArrayView<float>, ThreeBandFilterBank::kNumBands>
+ in,
+ rtc::ArrayView<float, kFullBandSize> out) {
+ std::fill(out.begin(), out.end(), 0);
+ for (int upsampling_index = 0; upsampling_index < kSubSampling;
+ ++upsampling_index) {
+ for (int in_shift = 0; in_shift < kStride; ++in_shift) {
+ // Choose filter, skip zero filters.
+ const int index = upsampling_index + in_shift * kSubSampling;
+ if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) {
+ continue;
+ }
+ const int filter_index =
+ index < kZeroFilterIndex1
+ ? index
+ : (index < kZeroFilterIndex2 ? index - 1 : index - 2);
-// Modulates |in| by |dct_modulation_| and accumulates it in each of the
-// |kNumBands| bands of |out|. |offset| is the index in the period of the
-// cosines used for modulation. |split_length| is the length of |in| and each
-// band of |out|.
-void ThreeBandFilterBank::DownModulate(const float* in,
- size_t split_length,
- size_t offset,
- float* const* out) {
- for (size_t i = 0; i < kNumBands; ++i) {
- for (size_t j = 0; j < split_length; ++j) {
- out[i][j] += dct_modulation_[offset][i] * in[j];
- }
- }
-}
+ rtc::ArrayView<const float, kFilterSize> filter(
+ kFilterCoeffs[filter_index]);
+ rtc::ArrayView<const float, kDctSize> dct_modulation(
+ kDctModulation[filter_index]);
+ rtc::ArrayView<float, kMemorySize> state(state_synthesis_[filter_index]);
-// Modulates each of the |kNumBands| bands of |in| by |dct_modulation_| and
-// accumulates them in |out|. |out| is cleared before starting to accumulate.
-// |offset| is the index in the period of the cosines used for modulation.
-// |split_length| is the length of each band of |in| and |out|.
-void ThreeBandFilterBank::UpModulate(const float* const* in,
- size_t split_length,
- size_t offset,
- float* out) {
- memset(out, 0, split_length * sizeof(*out));
- for (size_t i = 0; i < kNumBands; ++i) {
- for (size_t j = 0; j < split_length; ++j) {
- out[j] += dct_modulation_[offset][i] * in[i][j];
+ // Prepare filter input by modulating the banded input.
+ std::array<float, kSplitBandSize> in_subsampled;
+ std::fill(in_subsampled.begin(), in_subsampled.end(), 0.f);
+ for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) {
+ RTC_DCHECK_EQ(in[band].size(), kSplitBandSize);
+ for (int n = 0; n < kSplitBandSize; ++n) {
+ in_subsampled[n] += dct_modulation[band] * in[band][n];
+ }
+ }
+
+ // Filter.
+ std::array<float, kSplitBandSize> out_subsampled;
+ FilterCore(filter, in_subsampled, in_shift, out_subsampled, state);
+
+ // Upsample.
+ constexpr float kUpsamplingScaling = kSubSampling;
+ for (int k = 0; k < kSplitBandSize; ++k) {
+ out[upsampling_index + kSubSampling * k] +=
+ kUpsamplingScaling * out_subsampled[k];
+ }
}
}
}
diff --git a/modules/audio_processing/three_band_filter_bank.h b/modules/audio_processing/three_band_filter_bank.h
index ccbf2dd..e6346de 100644
--- a/modules/audio_processing/three_band_filter_bank.h
+++ b/modules/audio_processing/three_band_filter_bank.h
@@ -11,14 +11,25 @@
#ifndef MODULES_AUDIO_PROCESSING_THREE_BAND_FILTER_BANK_H_
#define MODULES_AUDIO_PROCESSING_THREE_BAND_FILTER_BANK_H_
+#include <array>
#include <cstring>
#include <memory>
#include <vector>
-#include "common_audio/sparse_fir_filter.h"
+#include "api/array_view.h"
namespace webrtc {
+constexpr int kSparsity = 4;
+constexpr int kStrideLog2 = 2;
+constexpr int kStride = 1 << kStrideLog2;
+constexpr int kNumZeroFilters = 2;
+constexpr int kFilterSize = 4;
+constexpr int kMemorySize = kFilterSize * kStride - 1;
+static_assert(kMemorySize == 15,
+ "The memory size must be sufficient to provide memory for the "
+ "shifted filters");
+
// An implementation of a 3-band FIR filter-bank with DCT modulation, similar to
// the proposed in "Multirate Signal Processing for Communication Systems" by
// Fredric J Harris.
@@ -34,34 +45,31 @@
// depending on the input signal after compensating for the delay.
class ThreeBandFilterBank final {
public:
- explicit ThreeBandFilterBank(size_t length);
+ static const int kNumBands = 3;
+ static const int kFullBandSize = 480;
+ static const int kSplitBandSize =
+ ThreeBandFilterBank::kFullBandSize / ThreeBandFilterBank::kNumBands;
+ static const int kNumNonZeroFilters =
+ kSparsity * ThreeBandFilterBank::kNumBands - kNumZeroFilters;
+
+ ThreeBandFilterBank();
~ThreeBandFilterBank();
- // Splits |in| into 3 downsampled frequency bands in |out|.
- // |length| is the |in| length. Each of the 3 bands of |out| has to have a
- // length of |length| / 3.
- void Analysis(const float* in, size_t length, float* const* out);
+ // Splits |in| of size kFullBandSize into 3 downsampled frequency bands in
+ // |out|, each of size 160.
+ void Analysis(rtc::ArrayView<const float, kFullBandSize> in,
+ rtc::ArrayView<const rtc::ArrayView<float>, kNumBands> out);
- // Merges the 3 downsampled frequency bands in |in| into |out|.
- // |split_length| is the length of each band of |in|. |out| has to have at
- // least a length of 3 * |split_length|.
- void Synthesis(const float* const* in, size_t split_length, float* out);
+ // Merges the 3 downsampled frequency bands in |in|, each of size 160, into
+ // |out|, which is of size kFullBandSize.
+ void Synthesis(rtc::ArrayView<const rtc::ArrayView<float>, kNumBands> in,
+ rtc::ArrayView<float, kFullBandSize> out);
private:
- void DownModulate(const float* in,
- size_t split_length,
- size_t offset,
- float* const* out);
- void UpModulate(const float* const* in,
- size_t split_length,
- size_t offset,
- float* out);
-
- std::vector<float> in_buffer_;
- std::vector<float> out_buffer_;
- std::vector<std::unique_ptr<SparseFIRFilter>> analysis_filters_;
- std::vector<std::unique_ptr<SparseFIRFilter>> synthesis_filters_;
- std::vector<std::vector<float>> dct_modulation_;
+ std::array<std::array<float, kMemorySize>, kNumNonZeroFilters>
+ state_analysis_;
+ std::array<std::array<float, kMemorySize>, kNumNonZeroFilters>
+ state_synthesis_;
};
} // namespace webrtc