blob: 5e59ebd509a910918c5bcd9d0de1da5ab1745109 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/test/receiver_tests.h"
#include "webrtc/modules/video_coding/main/test/test_macros.h"
#include "webrtc/modules/video_coding/main/test/test_util.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/test/testsupport/fileutils.h"
using namespace webrtc;
float vcmFloatMax(float a, float b)
{
return a > b ? a : b;
}
float vcmFloatMin(float a, float b)
{
return a < b ? a : b;
}
double const pi = 4*std::atan(1.0);
class GaussDist
{
public:
static float RandValue(float m, float stdDev) // returns a single normally distributed number
{
float r1 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0)); // gives equal distribution in (0, 1]
float r2 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0));
return m + stdDev * static_cast<float>(std::sqrt(-2*std::log(r1))*std::cos(2*pi*r2));
}
};
int ReceiverTimingTests(CmdArgs& args)
{
// Set up trace
Trace::CreateTrace();
Trace::SetTraceFile((test::OutputPath() + "receiverTestTrace.txt").c_str());
Trace::SetLevelFilter(webrtc::kTraceAll);
// A static random seed
srand(0);
Clock* clock = Clock::GetRealTimeClock();
VCMTiming timing(clock);
float clockInMs = 0.0;
uint32_t waitTime = 0;
uint32_t jitterDelayMs = 0;
uint32_t maxDecodeTimeMs = 0;
uint32_t timeStamp = 0;
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
timing.UpdateCurrentDelay(timeStamp);
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
jitterDelayMs = 20;
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
// First update initializes the render time. Since we have no decode delay
// we get waitTime = renderTime - now - renderDelay = jitter
TEST(waitTime == jitterDelayMs);
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
timeStamp += 90000;
clockInMs += 1000.0f;
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
// Since we gradually increase the delay we only get
// 100 ms every second.
TEST(waitTime == jitterDelayMs - 10);
timeStamp += 90000;
clockInMs += 1000.0;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
// 300 incoming frames without jitter, verify that this gives the exact wait time
for (int i=0; i < 300; i++)
{
clockInMs += 1000.0f/30.0f;
timeStamp += 3000;
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
}
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
// Add decode time estimates
for (int i=0; i < 10; i++)
{
int64_t startTimeMs = static_cast<int64_t>(clockInMs + 0.5);
clockInMs += 10.0f;
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<int64_t>(clockInMs + 0.5));
timeStamp += 3000;
clockInMs += 1000.0f/30.0f - 10.0f;
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
}
maxDecodeTimeMs = 10;
timing.SetRequiredDelay(jitterDelayMs);
clockInMs += 1000.0f;
timeStamp += 90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
uint32_t totalDelay1 = timing.TargetVideoDelay();
uint32_t minTotalDelayMs = 200;
timing.SetMinimumTotalDelay(minTotalDelayMs);
clockInMs += 5000.0f;
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
uint32_t totalDelay2 = timing.TargetVideoDelay();
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime (10) to wait
TEST(waitTime == minTotalDelayMs - maxDecodeTimeMs - 10);
// The total video delay should not increase with the extra delay,
// the extra delay should be independent.
TEST(totalDelay1 == totalDelay2);
// Reset min total delay
timing.SetMinimumTotalDelay(0);
clockInMs += 5000.0f;
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
// A sudden increase in timestamp of 2.1 seconds
clockInMs += 1000.0f/30.0f;
timeStamp += static_cast<uint32_t>(2.1*90000 + 0.5);
int64_t ret = timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
TEST(ret == -1);
timing.Reset();
// This test produces a trace which can be parsed with plotTimingTest.m. The plot
// can be used to see that the timing is reasonable under noise, and that the
// gradual transition between delays works as expected.
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "Stochastic test 1");
jitterDelayMs = 60;
maxDecodeTimeMs = 10;
timeStamp = static_cast<uint32_t>(-10000); // To produce a wrap
clockInMs = 10000.0f;
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
float noise = 0.0f;
for (int i=0; i < 1400; i++)
{
if (i == 400)
{
jitterDelayMs = 30;
}
else if (i == 700)
{
jitterDelayMs = 100;
}
else if (i == 1000)
{
minTotalDelayMs = 200;
timing.SetMinimumTotalDelay(minTotalDelayMs);
}
else if (i == 1200)
{
minTotalDelayMs = 0;
timing.SetMinimumTotalDelay(minTotalDelayMs);
}
int64_t startTimeMs = static_cast<int64_t>(clockInMs + 0.5);
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 2), -10.0f), 30.0f);
clockInMs += 10.0f;
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<int64_t>(clockInMs + noise + 0.5));
timeStamp += 3000;
clockInMs += 1000.0f/30.0f - 10.0f;
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 8), -15.0f), 15.0f);
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + noise + 0.5));
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "timeStamp=%u clock=%u maxWaitTime=%u", timeStamp,
static_cast<uint32_t>(clockInMs + 0.5), waitTime);
int64_t renderTimeMs = timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1,
"timeStamp=%u renderTime=%u",
timeStamp,
MaskWord64ToUWord32(renderTimeMs));
}
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "End Stochastic test 1");
printf("\nVCM Timing Test: \n\n%i tests completed\n", vcmMacrosTests);
if (vcmMacrosErrors > 0)
{
printf("%i FAILED\n\n", vcmMacrosErrors);
}
else
{
printf("ALL PASSED\n\n");
}
Trace::ReturnTrace();
return 0;
}