Revert "Move webrtc/{base => rtc_base}" (https://codereview.webrtc.org/2877023002)

Will reland in two different commits to preserve git blame history.

BUG=webrtc:7634
NOTRY=True
TBR=kwiberg@webrtc.org

Change-Id: I550da8525aeb9c5b8f96338fcf1c9714f3dcdab1
Reviewed-on: https://chromium-review.googlesource.com/554610
Reviewed-by: Henrik Kjellander <kjellander@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#18820}
diff --git a/webrtc/base/rollingaccumulator.h b/webrtc/base/rollingaccumulator.h
index a7de4f1..6627375 100644
--- a/webrtc/base/rollingaccumulator.h
+++ b/webrtc/base/rollingaccumulator.h
@@ -11,9 +11,164 @@
 #ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_
 #define WEBRTC_BASE_ROLLINGACCUMULATOR_H_
 
+#include <algorithm>
+#include <vector>
 
-// This header is deprecated and is just left here temporarily during
-// refactoring. See https://bugs.webrtc.org/7634 for more details.
-#include "webrtc/rtc_base/rollingaccumulator.h"
+#include "webrtc/base/checks.h"
+#include "webrtc/base/constructormagic.h"
+
+namespace rtc {
+
+// RollingAccumulator stores and reports statistics
+// over N most recent samples.
+//
+// T is assumed to be an int, long, double or float.
+template<typename T>
+class RollingAccumulator {
+ public:
+  explicit RollingAccumulator(size_t max_count)
+    : samples_(max_count) {
+    Reset();
+  }
+  ~RollingAccumulator() {
+  }
+
+  size_t max_count() const {
+    return samples_.size();
+  }
+
+  size_t count() const {
+    return count_;
+  }
+
+  void Reset() {
+    count_ = 0U;
+    next_index_ = 0U;
+    sum_ = 0.0;
+    sum_2_ = 0.0;
+    max_ = T();
+    max_stale_ = false;
+    min_ = T();
+    min_stale_ = false;
+  }
+
+  void AddSample(T sample) {
+    if (count_ == max_count()) {
+      // Remove oldest sample.
+      T sample_to_remove = samples_[next_index_];
+      sum_ -= sample_to_remove;
+      sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove;
+      if (sample_to_remove >= max_) {
+        max_stale_ = true;
+      }
+      if (sample_to_remove <= min_) {
+        min_stale_ = true;
+      }
+    } else {
+      // Increase count of samples.
+      ++count_;
+    }
+    // Add new sample.
+    samples_[next_index_] = sample;
+    sum_ += sample;
+    sum_2_ += static_cast<double>(sample) * sample;
+    if (count_ == 1 || sample >= max_) {
+      max_ = sample;
+      max_stale_ = false;
+    }
+    if (count_ == 1 || sample <= min_) {
+      min_ = sample;
+      min_stale_ = false;
+    }
+    // Update next_index_.
+    next_index_ = (next_index_ + 1) % max_count();
+  }
+
+  T ComputeSum() const {
+    return static_cast<T>(sum_);
+  }
+
+  double ComputeMean() const {
+    if (count_ == 0) {
+      return 0.0;
+    }
+    return sum_ / count_;
+  }
+
+  T ComputeMax() const {
+    if (max_stale_) {
+      RTC_DCHECK(count_ > 0) <<
+                 "It shouldn't be possible for max_stale_ && count_ == 0";
+      max_ = samples_[next_index_];
+      for (size_t i = 1u; i < count_; i++) {
+        max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]);
+      }
+      max_stale_ = false;
+    }
+    return max_;
+  }
+
+  T ComputeMin() const {
+    if (min_stale_) {
+      RTC_DCHECK(count_ > 0) <<
+                 "It shouldn't be possible for min_stale_ && count_ == 0";
+      min_ = samples_[next_index_];
+      for (size_t i = 1u; i < count_; i++) {
+        min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]);
+      }
+      min_stale_ = false;
+    }
+    return min_;
+  }
+
+  // O(n) time complexity.
+  // Weights nth sample with weight (learning_rate)^n. Learning_rate should be
+  // between (0.0, 1.0], otherwise the non-weighted mean is returned.
+  double ComputeWeightedMean(double learning_rate) const {
+    if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
+      return ComputeMean();
+    }
+    double weighted_mean = 0.0;
+    double current_weight = 1.0;
+    double weight_sum = 0.0;
+    const size_t max_size = max_count();
+    for (size_t i = 0; i < count_; ++i) {
+      current_weight *= learning_rate;
+      weight_sum += current_weight;
+      // Add max_size to prevent underflow.
+      size_t index = (next_index_ + max_size - i - 1) % max_size;
+      weighted_mean += current_weight * samples_[index];
+    }
+    return weighted_mean / weight_sum;
+  }
+
+  // Compute estimated variance.  Estimation is more accurate
+  // as the number of samples grows.
+  double ComputeVariance() const {
+    if (count_ == 0) {
+      return 0.0;
+    }
+    // Var = E[x^2] - (E[x])^2
+    double count_inv = 1.0 / count_;
+    double mean_2 = sum_2_ * count_inv;
+    double mean = sum_ * count_inv;
+    return mean_2 - (mean * mean);
+  }
+
+ private:
+  size_t count_;
+  size_t next_index_;
+  double sum_;    // Sum(x) - double to avoid overflow
+  double sum_2_;  // Sum(x*x) - double to avoid overflow
+  mutable T max_;
+  mutable bool max_stale_;
+  mutable T min_;
+  mutable bool min_stale_;
+  std::vector<T> samples_;
+
+  RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator);
+};
+
+}  // namespace rtc
 
 #endif  // WEBRTC_BASE_ROLLINGACCUMULATOR_H_