Adds a modified copy of talk/base to webrtc/base. It is the first step in
migrating talk/base to webrtc/base.

BUG=N/A
R=niklas.enbom@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/17479005

git-svn-id: http://webrtc.googlecode.com/svn/trunk@6129 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/webrtc/base/win32.cc b/webrtc/base/win32.cc
new file mode 100644
index 0000000..8f56612
--- /dev/null
+++ b/webrtc/base/win32.cc
@@ -0,0 +1,456 @@
+/*
+ *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/base/win32.h"
+
+#include <winsock2.h>
+#include <ws2tcpip.h>
+#include <algorithm>
+
+#include "webrtc/base/basictypes.h"
+#include "webrtc/base/byteorder.h"
+#include "webrtc/base/common.h"
+#include "webrtc/base/logging.h"
+
+namespace rtc {
+
+// Helper function declarations for inet_ntop/inet_pton.
+static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
+static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
+static int inet_pton_v4(const char* src, void* dst);
+static int inet_pton_v6(const char* src, void* dst);
+
+// Implementation of inet_ntop (create a printable representation of an
+// ip address). XP doesn't have its own inet_ntop, and
+// WSAAddressToString requires both IPv6 to be  installed and for Winsock
+// to be initialized.
+const char* win32_inet_ntop(int af, const void *src,
+                            char* dst, socklen_t size) {
+  if (!src || !dst) {
+    return NULL;
+  }
+  switch (af) {
+    case AF_INET: {
+      return inet_ntop_v4(src, dst, size);
+    }
+    case AF_INET6: {
+      return inet_ntop_v6(src, dst, size);
+    }
+  }
+  return NULL;
+}
+
+// As above, but for inet_pton. Implements inet_pton for v4 and v6.
+// Note that our inet_ntop will output normal 'dotted' v4 addresses only.
+int win32_inet_pton(int af, const char* src, void* dst) {
+  if (!src || !dst) {
+    return 0;
+  }
+  if (af == AF_INET) {
+    return inet_pton_v4(src, dst);
+  } else if (af == AF_INET6) {
+    return inet_pton_v6(src, dst);
+  }
+  return -1;
+}
+
+// Helper function for inet_ntop for IPv4 addresses.
+// Outputs "dotted-quad" decimal notation.
+const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
+  if (size < INET_ADDRSTRLEN) {
+    return NULL;
+  }
+  const struct in_addr* as_in_addr =
+      reinterpret_cast<const struct in_addr*>(src);
+  rtc::sprintfn(dst, size, "%d.%d.%d.%d",
+                      as_in_addr->S_un.S_un_b.s_b1,
+                      as_in_addr->S_un.S_un_b.s_b2,
+                      as_in_addr->S_un.S_un_b.s_b3,
+                      as_in_addr->S_un.S_un_b.s_b4);
+  return dst;
+}
+
+// Helper function for inet_ntop for IPv6 addresses.
+const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
+  if (size < INET6_ADDRSTRLEN) {
+    return NULL;
+  }
+  const uint16* as_shorts =
+      reinterpret_cast<const uint16*>(src);
+  int runpos[8];
+  int current = 1;
+  int max = 1;
+  int maxpos = -1;
+  int run_array_size = ARRAY_SIZE(runpos);
+  // Run over the address marking runs of 0s.
+  for (int i = 0; i < run_array_size; ++i) {
+    if (as_shorts[i] == 0) {
+      runpos[i] = current;
+      if (current > max) {
+        maxpos = i;
+        max = current;
+      }
+      ++current;
+    } else {
+      runpos[i] = -1;
+      current =1;
+    }
+  }
+
+  if (max > 1) {
+    int tmpmax = maxpos;
+    // Run back through, setting -1 for all but the longest run.
+    for (int i = run_array_size - 1; i >= 0; i--) {
+      if (i > tmpmax) {
+        runpos[i] = -1;
+      } else if (runpos[i] == -1) {
+        // We're less than maxpos, we hit a -1, so the 'good' run is done.
+        // Setting tmpmax -1 means all remaining positions get set to -1.
+        tmpmax = -1;
+      }
+    }
+  }
+
+  char* cursor = dst;
+  // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
+  // These addresses have an initial run of either eight zero-bytes followed
+  // by 0xFFFF, or an initial run of ten zero-bytes.
+  if (runpos[0] == 1 && (maxpos == 5 ||
+                         (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
+    *cursor++ = ':';
+    *cursor++ = ':';
+    if (maxpos == 4) {
+      cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
+    }
+    const struct in_addr* as_v4 =
+        reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
+    inet_ntop_v4(as_v4, cursor,
+                 static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
+  } else {
+    for (int i = 0; i < run_array_size; ++i) {
+      if (runpos[i] == -1) {
+        cursor += rtc::sprintfn(cursor,
+                                      INET6_ADDRSTRLEN - (cursor - dst),
+                                      "%x", NetworkToHost16(as_shorts[i]));
+        if (i != 7 && runpos[i + 1] != 1) {
+          *cursor++ = ':';
+        }
+      } else if (runpos[i] == 1) {
+        // Entered the run; print the colons and skip the run.
+        *cursor++ = ':';
+        *cursor++ = ':';
+        i += (max - 1);
+      }
+    }
+  }
+  return dst;
+}
+
+// Helper function for inet_pton for IPv4 addresses.
+// |src| points to a character string containing an IPv4 network address in
+// dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
+// of up to three digits in the range 0 to 255.
+// The address is converted and copied to dst,
+// which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
+int inet_pton_v4(const char* src, void* dst) {
+  const int kIpv4AddressSize = 4;
+  int found = 0;
+  const char* src_pos = src;
+  unsigned char result[kIpv4AddressSize] = {0};
+
+  while (*src_pos != '\0') {
+    // strtol won't treat whitespace characters in the begining as an error,
+    // so check to ensure this is started with digit before passing to strtol.
+    if (!isdigit(*src_pos)) {
+      return 0;
+    }
+    char* end_pos;
+    long value = strtol(src_pos, &end_pos, 10);
+    if (value < 0 || value > 255 || src_pos == end_pos) {
+      return 0;
+    }
+    ++found;
+    if (found > kIpv4AddressSize) {
+      return 0;
+    }
+    result[found - 1] = static_cast<unsigned char>(value);
+    src_pos = end_pos;
+    if (*src_pos == '.') {
+      // There's more.
+      ++src_pos;
+    } else if (*src_pos != '\0') {
+      // If it's neither '.' nor '\0' then return fail.
+      return 0;
+    }
+  }
+  if (found != kIpv4AddressSize) {
+    return 0;
+  }
+  memcpy(dst, result, sizeof(result));
+  return 1;
+}
+
+// Helper function for inet_pton for IPv6 addresses.
+int inet_pton_v6(const char* src, void* dst) {
+  // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
+  // Check for literal x in the input string.
+  const char* readcursor = src;
+  char c = *readcursor++;
+  while (c) {
+    if (c == 'x') {
+      return 0;
+    }
+    c = *readcursor++;
+  }
+  readcursor = src;
+
+  struct in6_addr an_addr;
+  memset(&an_addr, 0, sizeof(an_addr));
+
+  uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]);
+  uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]);
+  bool seencompressed = false;
+
+  // Addresses that start with "::" (i.e., a run of initial zeros) or
+  // "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
+  // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
+  if (*readcursor == ':' && *(readcursor+1) == ':' &&
+      *(readcursor + 2) != 0) {
+    // Check for periods, which we'll take as a sign of v4 addresses.
+    const char* addrstart = readcursor + 2;
+    if (rtc::strchr(addrstart, ".")) {
+      const char* colon = rtc::strchr(addrstart, "::");
+      if (colon) {
+        uint16 a_short;
+        int bytesread = 0;
+        if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
+            a_short != 0xFFFF || bytesread != 4) {
+          // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
+          return 0;
+        } else {
+          an_addr.s6_addr[10] = 0xFF;
+          an_addr.s6_addr[11] = 0xFF;
+          addrstart = colon + 1;
+        }
+      }
+      struct in_addr v4;
+      if (inet_pton_v4(addrstart, &v4.s_addr)) {
+        memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
+        memcpy(dst, &an_addr, sizeof(an_addr));
+        return 1;
+      } else {
+        // Invalid v4 address.
+        return 0;
+      }
+    }
+  }
+
+  // For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
+  while (*readcursor != 0 && addr_cursor < addr_end) {
+    if (*readcursor == ':') {
+      if (*(readcursor + 1) == ':') {
+        if (seencompressed) {
+          // Can only have one compressed run of zeroes ("::") per address.
+          return 0;
+        }
+        // Hit a compressed run. Count colons to figure out how much of the
+        // address is skipped.
+        readcursor += 2;
+        const char* coloncounter = readcursor;
+        int coloncount = 0;
+        if (*coloncounter == 0) {
+          // Special case - trailing ::.
+          addr_cursor = addr_end;
+        } else {
+          while (*coloncounter) {
+            if (*coloncounter == ':') {
+              ++coloncount;
+            }
+            ++coloncounter;
+          }
+          // (coloncount + 1) is the number of shorts left in the address.
+          addr_cursor = addr_end - (coloncount + 1);
+          seencompressed = true;
+        }
+      } else {
+        ++readcursor;
+      }
+    } else {
+      uint16 word;
+      int bytesread = 0;
+      if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
+        return 0;
+      } else {
+        *addr_cursor = HostToNetwork16(word);
+        ++addr_cursor;
+        readcursor += bytesread;
+        if (*readcursor != ':' && *readcursor != '\0') {
+          return 0;
+        }
+      }
+    }
+  }
+
+  if (*readcursor != '\0' || addr_cursor < addr_end) {
+    // Catches addresses too short or too long.
+    return 0;
+  }
+  memcpy(dst, &an_addr, sizeof(an_addr));
+  return 1;
+}
+
+//
+// Unix time is in seconds relative to 1/1/1970.  So we compute the windows
+// FILETIME of that time/date, then we add/subtract in appropriate units to
+// convert to/from unix time.
+// The units of FILETIME are 100ns intervals, so by multiplying by or dividing
+// by 10000000, we can convert to/from seconds.
+//
+// FileTime = UnixTime*10000000 + FileTime(1970)
+// UnixTime = (FileTime-FileTime(1970))/10000000
+//
+
+void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
+  ASSERT(NULL != ut);
+
+  // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
+  // the difference.
+  SYSTEMTIME base_st;
+  memset(&base_st, 0, sizeof(base_st));
+  base_st.wDay = 1;
+  base_st.wMonth = 1;
+  base_st.wYear = 1970;
+
+  FILETIME base_ft;
+  SystemTimeToFileTime(&base_st, &base_ft);
+
+  ULARGE_INTEGER base_ul, current_ul;
+  memcpy(&base_ul, &base_ft, sizeof(FILETIME));
+  memcpy(&current_ul, &ft, sizeof(FILETIME));
+
+  // Divide by big number to convert to seconds, then subtract out the 1970
+  // base date value.
+  const ULONGLONG RATIO = 10000000;
+  *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
+}
+
+void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
+  ASSERT(NULL != ft);
+
+  // FILETIME has an earlier date base than time_t (1/1/1970), so add in
+  // the difference.
+  SYSTEMTIME base_st;
+  memset(&base_st, 0, sizeof(base_st));
+  base_st.wDay = 1;
+  base_st.wMonth = 1;
+  base_st.wYear = 1970;
+
+  FILETIME base_ft;
+  SystemTimeToFileTime(&base_st, &base_ft);
+
+  ULARGE_INTEGER base_ul;
+  memcpy(&base_ul, &base_ft, sizeof(FILETIME));
+
+  // Multiply by big number to convert to 100ns units, then add in the 1970
+  // base date value.
+  const ULONGLONG RATIO = 10000000;
+  ULARGE_INTEGER current_ul;
+  current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO;
+  memcpy(ft, &current_ul, sizeof(FILETIME));
+}
+
+bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
+  // TODO: Integrate into fileutils.h
+  // TODO: Handle wide and non-wide cases via TCHAR?
+  // TODO: Skip \\?\ processing if the length is not > MAX_PATH?
+  // TODO: Write unittests
+
+  // Convert to Utf16
+  int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
+                                   static_cast<int>(utf8.length() + 1), NULL,
+                                   0);
+  if (0 == wlen) {
+    return false;
+  }
+  wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
+  if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
+                                 static_cast<int>(utf8.length() + 1),
+                                 wfilename, wlen)) {
+    return false;
+  }
+  // Replace forward slashes with backslashes
+  std::replace(wfilename, wfilename + wlen, L'/', L'\\');
+  // Convert to complete filename
+  DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
+  if (0 == full_len) {
+    return false;
+  }
+  wchar_t* filepart = NULL;
+  wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
+  wchar_t* start = full_filename + 6;
+  if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
+    return false;
+  }
+  // Add long-path prefix
+  const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
+  if ((start[0] != L'\\') || (start[1] != L'\\')) {
+    // Non-unc path:     <pathname>
+    //      Becomes: \\?\<pathname>
+    start -= 4;
+    ASSERT(start >= full_filename);
+    memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
+  } else if (start[2] != L'?') {
+    // Unc path:       \\<server>\<pathname>
+    //  Becomes: \\?\UNC\<server>\<pathname>
+    start -= 6;
+    ASSERT(start >= full_filename);
+    memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
+  } else {
+    // Already in long-path form.
+  }
+  filename->assign(start);
+  return true;
+}
+
+bool GetOsVersion(int* major, int* minor, int* build) {
+  OSVERSIONINFO info = {0};
+  info.dwOSVersionInfoSize = sizeof(info);
+  if (GetVersionEx(&info)) {
+    if (major) *major = info.dwMajorVersion;
+    if (minor) *minor = info.dwMinorVersion;
+    if (build) *build = info.dwBuildNumber;
+    return true;
+  }
+  return false;
+}
+
+bool GetCurrentProcessIntegrityLevel(int* level) {
+  bool ret = false;
+  HANDLE process = ::GetCurrentProcess(), token;
+  if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
+    DWORD size;
+    if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
+        GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
+
+      char* buf = STACK_ARRAY(char, size);
+      TOKEN_MANDATORY_LABEL* til =
+          reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
+      if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
+
+        DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
+        *level = *GetSidSubAuthority(til->Label.Sid, count - 1);
+        ret = true;
+      }
+    }
+    CloseHandle(token);
+  }
+  return ret;
+}
+}  // namespace rtc