| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // mutex.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file defines a `Mutex` -- a mutually exclusive lock -- and the |
| // most common type of synchronization primitive for facilitating locks on |
| // shared resources. A mutex is used to prevent multiple threads from accessing |
| // and/or writing to a shared resource concurrently. |
| // |
| // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional |
| // features: |
| // * Conditional predicates intrinsic to the `Mutex` object |
| // * Reader/writer locks, in addition to standard exclusive/writer locks |
| // * Deadlock detection and debug support. |
| // |
| // The following helper classes are also defined within this file: |
| // |
| // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ |
| // write access within the current scope. |
| // ReaderMutexLock |
| // - An RAII wrapper to acquire and release a `Mutex` for shared/read |
| // access within the current scope. |
| // |
| // WriterMutexLock |
| // - Alias for `MutexLock` above, designed for use in distinguishing |
| // reader and writer locks within code. |
| // |
| // In addition to simple mutex locks, this file also defines ways to perform |
| // locking under certain conditions. |
| // |
| // Condition - (Preferred) Used to wait for a particular predicate that |
| // depends on state protected by the `Mutex` to become true. |
| // CondVar - A lower-level variant of `Condition` that relies on |
| // application code to explicitly signal the `CondVar` when |
| // a condition has been met. |
| // |
| // See below for more information on using `Condition` or `CondVar`. |
| // |
| // Mutexes and mutex behavior can be quite complicated. The information within |
| // this header file is limited, as a result. Please consult the Mutex guide for |
| // more complete information and examples. |
| |
| #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_ |
| #define ABSL_SYNCHRONIZATION_MUTEX_H_ |
| |
| #include <atomic> |
| #include <cstdint> |
| #include <string> |
| |
| #include "absl/base/internal/identity.h" |
| #include "absl/base/internal/low_level_alloc.h" |
| #include "absl/base/internal/thread_identity.h" |
| #include "absl/base/internal/tsan_mutex_interface.h" |
| #include "absl/base/port.h" |
| #include "absl/base/thread_annotations.h" |
| #include "absl/synchronization/internal/kernel_timeout.h" |
| #include "absl/synchronization/internal/per_thread_sem.h" |
| #include "absl/time/time.h" |
| |
| // Decide if we should use the non-production implementation because |
| // the production implementation hasn't been fully ported yet. |
| #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set |
| #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING) |
| #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1 |
| #include "absl/synchronization/internal/mutex_nonprod.inc" |
| #endif |
| |
| namespace absl { |
| |
| class Condition; |
| struct SynchWaitParams; |
| |
| // ----------------------------------------------------------------------------- |
| // Mutex |
| // ----------------------------------------------------------------------------- |
| // |
| // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock |
| // on some resource, typically a variable or data structure with associated |
| // invariants. Proper usage of mutexes prevents concurrent access by different |
| // threads to the same resource. |
| // |
| // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. |
| // The `Lock()` operation *acquires* a `Mutex` (in a state known as an |
| // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a |
| // Mutex. During the span of time between the Lock() and Unlock() operations, |
| // a mutex is said to be *held*. By design all mutexes support exclusive/write |
| // locks, as this is the most common way to use a mutex. |
| // |
| // The `Mutex` state machine for basic lock/unlock operations is quite simple: |
| // |
| // | | Lock() | Unlock() | |
| // |----------------+------------+----------| |
| // | Free | Exclusive | invalid | |
| // | Exclusive | blocks | Free | |
| // |
| // Attempts to `Unlock()` must originate from the thread that performed the |
| // corresponding `Lock()` operation. |
| // |
| // An "invalid" operation is disallowed by the API. The `Mutex` implementation |
| // is allowed to do anything on an invalid call, including but not limited to |
| // crashing with a useful error message, silently succeeding, or corrupting |
| // data structures. In debug mode, the implementation attempts to crash with a |
| // useful error message. |
| // |
| // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it |
| // is, however, approximately fair over long periods, and starvation-free for |
| // threads at the same priority. |
| // |
| // The lock/unlock primitives are now annotated with lock annotations |
| // defined in (base/thread_annotations.h). When writing multi-threaded code, |
| // you should use lock annotations whenever possible to document your lock |
| // synchronization policy. Besides acting as documentation, these annotations |
| // also help compilers or static analysis tools to identify and warn about |
| // issues that could potentially result in race conditions and deadlocks. |
| // |
| // For more information about the lock annotations, please see |
| // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) |
| // in the Clang documentation. |
| // |
| // See also `MutexLock`, below, for scoped `Mutex` acquisition. |
| |
| class LOCKABLE Mutex { |
| public: |
| Mutex(); |
| ~Mutex(); |
| |
| // Mutex::Lock() |
| // |
| // Blocks the calling thread, if necessary, until this `Mutex` is free, and |
| // then acquires it exclusively. (This lock is also known as a "write lock.") |
| void Lock() EXCLUSIVE_LOCK_FUNCTION(); |
| |
| // Mutex::Unlock() |
| // |
| // Releases this `Mutex` and returns it from the exclusive/write state to the |
| // free state. Caller must hold the `Mutex` exclusively. |
| void Unlock() UNLOCK_FUNCTION(); |
| |
| // Mutex::TryLock() |
| // |
| // If the mutex can be acquired without blocking, does so exclusively and |
| // returns `true`. Otherwise, returns `false`. Returns `true` with high |
| // probability if the `Mutex` was free. |
| bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true); |
| |
| // Mutex::AssertHeld() |
| // |
| // Return immediately if this thread holds the `Mutex` exclusively (in write |
| // mode). Otherwise, may report an error (typically by crashing with a |
| // diagnostic), or may return immediately. |
| void AssertHeld() const ASSERT_EXCLUSIVE_LOCK(); |
| |
| // --------------------------------------------------------------------------- |
| // Reader-Writer Locking |
| // --------------------------------------------------------------------------- |
| |
| // A Mutex can also be used as a starvation-free reader-writer lock. |
| // Neither read-locks nor write-locks are reentrant/recursive to avoid |
| // potential client programming errors. |
| // |
| // The Mutex API provides `Writer*()` aliases for the existing `Lock()`, |
| // `Unlock()` and `TryLock()` methods for use within applications mixing |
| // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this |
| // manner can make locking behavior clearer when mixing read and write modes. |
| // |
| // Introducing reader locks necessarily complicates the `Mutex` state |
| // machine somewhat. The table below illustrates the allowed state transitions |
| // of a mutex in such cases. Note that ReaderLock() may block even if the lock |
| // is held in shared mode; this occurs when another thread is blocked on a |
| // call to WriterLock(). |
| // |
| // --------------------------------------------------------------------------- |
| // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() |
| // --------------------------------------------------------------------------- |
| // State |
| // --------------------------------------------------------------------------- |
| // Free Exclusive invalid Shared(1) invalid |
| // Shared(1) blocks invalid Shared(2) or blocks Free |
| // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) |
| // Exclusive blocks Free blocks invalid |
| // --------------------------------------------------------------------------- |
| // |
| // In comments below, "shared" refers to a state of Shared(n) for any n > 0. |
| |
| // Mutex::ReaderLock() |
| // |
| // Blocks the calling thread, if necessary, until this `Mutex` is either free, |
| // or in shared mode, and then acquires a share of it. Note that |
| // `ReaderLock()` will block if some other thread has an exclusive/writer lock |
| // on the mutex. |
| |
| void ReaderLock() SHARED_LOCK_FUNCTION(); |
| |
| // Mutex::ReaderUnlock() |
| // |
| // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to |
| // the free state if this thread holds the last reader lock on the mutex. Note |
| // that you cannot call `ReaderUnlock()` on a mutex held in write mode. |
| void ReaderUnlock() UNLOCK_FUNCTION(); |
| |
| // Mutex::ReaderTryLock() |
| // |
| // If the mutex can be acquired without blocking, acquires this mutex for |
| // shared access and returns `true`. Otherwise, returns `false`. Returns |
| // `true` with high probability if the `Mutex` was free or shared. |
| bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true); |
| |
| // Mutex::AssertReaderHeld() |
| // |
| // Returns immediately if this thread holds the `Mutex` in at least shared |
| // mode (read mode). Otherwise, may report an error (typically by |
| // crashing with a diagnostic), or may return immediately. |
| void AssertReaderHeld() const ASSERT_SHARED_LOCK(); |
| |
| // Mutex::WriterLock() |
| // Mutex::WriterUnlock() |
| // Mutex::WriterTryLock() |
| // |
| // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. |
| // |
| // These methods may be used (along with the complementary `Reader*()` |
| // methods) to distingish simple exclusive `Mutex` usage (`Lock()`, |
| // etc.) from reader/writer lock usage. |
| void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } |
| |
| void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); } |
| |
| bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { |
| return this->TryLock(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Conditional Critical Regions |
| // --------------------------------------------------------------------------- |
| |
| // Conditional usage of a `Mutex` can occur using two distinct paradigms: |
| // |
| // * Use of `Mutex` member functions with `Condition` objects. |
| // * Use of the separate `CondVar` abstraction. |
| // |
| // In general, prefer use of `Condition` and the `Mutex` member functions |
| // listed below over `CondVar`. When there are multiple threads waiting on |
| // distinctly different conditions, however, a battery of `CondVar`s may be |
| // more efficient. This section discusses use of `Condition` objects. |
| // |
| // `Mutex` contains member functions for performing lock operations only under |
| // certain conditions, of class `Condition`. For correctness, the `Condition` |
| // must return a boolean that is a pure function, only of state protected by |
| // the `Mutex`. The condition must be invariant w.r.t. environmental state |
| // such as thread, cpu id, or time, and must be `noexcept`. The condition will |
| // always be invoked with the mutex held in at least read mode, so you should |
| // not block it for long periods or sleep it on a timer. |
| // |
| // Since a condition must not depend directly on the current time, use |
| // `*WithTimeout()` member function variants to make your condition |
| // effectively true after a given duration, or `*WithDeadline()` variants to |
| // make your condition effectively true after a given time. |
| // |
| // The condition function should have no side-effects aside from debug |
| // logging; as a special exception, the function may acquire other mutexes |
| // provided it releases all those that it acquires. (This exception was |
| // required to allow logging.) |
| |
| // Mutex::Await() |
| // |
| // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` |
| // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the |
| // same mode in which it was previously held. If the condition is initially |
| // `true`, `Await()` *may* skip the release/re-acquire step. |
| // |
| // `Await()` requires that this thread holds this `Mutex` in some mode. |
| void Await(const Condition &cond); |
| |
| // Mutex::LockWhen() |
| // Mutex::ReaderLockWhen() |
| // Mutex::WriterLockWhen() |
| // |
| // Blocks until simultaneously both `cond` is `true` and this` Mutex` can |
| // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is |
| // logically equivalent to `*Lock(); Await();` though they may have different |
| // performance characteristics. |
| void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION(); |
| |
| void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION(); |
| |
| void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() { |
| this->LockWhen(cond); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Mutex Variants with Timeouts/Deadlines |
| // --------------------------------------------------------------------------- |
| |
| // Mutex::AwaitWithTimeout() |
| // Mutex::AwaitWithDeadline() |
| // |
| // If `cond` is initially true, do nothing, or act as though `cond` is |
| // initially false. |
| // |
| // If `cond` is initially false, unlock this `Mutex` and block until |
| // simultaneously: |
| // - either `cond` is true or the {timeout has expired, deadline has passed} |
| // and |
| // - this `Mutex` can be reacquired, |
| // then reacquire this `Mutex` in the same mode in which it was previously |
| // held, returning `true` iff `cond` is `true` on return. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| // Negative timeouts are equivalent to a zero timeout. |
| // |
| // This method requires that this thread holds this `Mutex` in some mode. |
| bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout); |
| |
| bool AwaitWithDeadline(const Condition &cond, absl::Time deadline); |
| |
| // Mutex::LockWhenWithTimeout() |
| // Mutex::ReaderLockWhenWithTimeout() |
| // Mutex::WriterLockWhenWithTimeout() |
| // |
| // Blocks until simultaneously both: |
| // - either `cond` is `true` or the timeout has expired, and |
| // - this `Mutex` can be acquired, |
| // then atomically acquires this `Mutex`, returning `true` iff `cond` is |
| // `true` on return. |
| // |
| // Negative timeouts are equivalent to a zero timeout. |
| bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| EXCLUSIVE_LOCK_FUNCTION(); |
| bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| SHARED_LOCK_FUNCTION(); |
| bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
| EXCLUSIVE_LOCK_FUNCTION() { |
| return this->LockWhenWithTimeout(cond, timeout); |
| } |
| |
| // Mutex::LockWhenWithDeadline() |
| // Mutex::ReaderLockWhenWithDeadline() |
| // Mutex::WriterLockWhenWithDeadline() |
| // |
| // Blocks until simultaneously both: |
| // - either `cond` is `true` or the deadline has been passed, and |
| // - this `Mutex` can be acquired, |
| // then atomically acquires this Mutex, returning `true` iff `cond` is `true` |
| // on return. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| EXCLUSIVE_LOCK_FUNCTION(); |
| bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| SHARED_LOCK_FUNCTION(); |
| bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
| EXCLUSIVE_LOCK_FUNCTION() { |
| return this->LockWhenWithDeadline(cond, deadline); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Debug Support: Invariant Checking, Deadlock Detection, Logging. |
| // --------------------------------------------------------------------------- |
| |
| // Mutex::EnableInvariantDebugging() |
| // |
| // If `invariant`!=null and if invariant debugging has been enabled globally, |
| // cause `(*invariant)(arg)` to be called at moments when the invariant for |
| // this `Mutex` should hold (for example: just after acquire, just before |
| // release). |
| // |
| // The routine `invariant` should have no side-effects since it is not |
| // guaranteed how many times it will be called; it should check the invariant |
| // and crash if it does not hold. Enabling global invariant debugging may |
| // substantially reduce `Mutex` performance; it should be set only for |
| // non-production runs. Optimization options may also disable invariant |
| // checks. |
| void EnableInvariantDebugging(void (*invariant)(void *), void *arg); |
| |
| // Mutex::EnableDebugLog() |
| // |
| // Cause all subsequent uses of this `Mutex` to be logged via |
| // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous |
| // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. |
| // |
| // Note: This method substantially reduces `Mutex` performance. |
| void EnableDebugLog(const char *name); |
| |
| // Deadlock detection |
| |
| // Mutex::ForgetDeadlockInfo() |
| // |
| // Forget any deadlock-detection information previously gathered |
| // about this `Mutex`. Call this method in debug mode when the lock ordering |
| // of a `Mutex` changes. |
| void ForgetDeadlockInfo(); |
| |
| // Mutex::AssertNotHeld() |
| // |
| // Return immediately if this thread does not hold this `Mutex` in any |
| // mode; otherwise, may report an error (typically by crashing with a |
| // diagnostic), or may return immediately. |
| // |
| // Currently this check is performed only if all of: |
| // - in debug mode |
| // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort |
| // - number of locks concurrently held by this thread is not large. |
| // are true. |
| void AssertNotHeld() const; |
| |
| // Special cases. |
| |
| // A `MuHow` is a constant that indicates how a lock should be acquired. |
| // Internal implementation detail. Clients should ignore. |
| typedef const struct MuHowS *MuHow; |
| |
| // Mutex::InternalAttemptToUseMutexInFatalSignalHandler() |
| // |
| // Causes the `Mutex` implementation to prepare itself for re-entry caused by |
| // future use of `Mutex` within a fatal signal handler. This method is |
| // intended for use only for last-ditch attempts to log crash information. |
| // It does not guarantee that attempts to use Mutexes within the handler will |
| // not deadlock; it merely makes other faults less likely. |
| // |
| // WARNING: This routine must be invoked from a signal handler, and the |
| // signal handler must either loop forever or terminate the process. |
| // Attempts to return from (or `longjmp` out of) the signal handler once this |
| // call has been made may cause arbitrary program behaviour including |
| // crashes and deadlocks. |
| static void InternalAttemptToUseMutexInFatalSignalHandler(); |
| |
| private: |
| #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| friend class CondVar; |
| |
| synchronization_internal::MutexImpl *impl() { return impl_.get(); } |
| |
| synchronization_internal::SynchronizationStorage< |
| synchronization_internal::MutexImpl> |
| impl_; |
| #else |
| std::atomic<intptr_t> mu_; // The Mutex state. |
| |
| // Post()/Wait() versus associated PerThreadSem; in class for required |
| // friendship with PerThreadSem. |
| static inline void IncrementSynchSem(Mutex *mu, |
| base_internal::PerThreadSynch *w); |
| static inline bool DecrementSynchSem( |
| Mutex *mu, base_internal::PerThreadSynch *w, |
| synchronization_internal::KernelTimeout t); |
| |
| // slow path acquire |
| void LockSlowLoop(SynchWaitParams *waitp, int flags); |
| // wrappers around LockSlowLoop() |
| bool LockSlowWithDeadline(MuHow how, const Condition *cond, |
| synchronization_internal::KernelTimeout t, |
| int flags); |
| void LockSlow(MuHow how, const Condition *cond, |
| int flags) ABSL_ATTRIBUTE_COLD; |
| // slow path release |
| void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD; |
| // Common code between Await() and AwaitWithTimeout/Deadline() |
| bool AwaitCommon(const Condition &cond, |
| synchronization_internal::KernelTimeout t); |
| // Attempt to remove thread s from queue. |
| void TryRemove(base_internal::PerThreadSynch *s); |
| // Block a thread on mutex. |
| void Block(base_internal::PerThreadSynch *s); |
| // Wake a thread; return successor. |
| base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w); |
| |
| friend class CondVar; // for access to Trans()/Fer(). |
| void Trans(MuHow how); // used for CondVar->Mutex transfer |
| void Fer( |
| base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer |
| #endif |
| |
| // Catch the error of writing Mutex when intending MutexLock. |
| Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit) |
| |
| Mutex(const Mutex&) = delete; |
| Mutex& operator=(const Mutex&) = delete; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Mutex RAII Wrappers |
| // ----------------------------------------------------------------------------- |
| |
| // MutexLock |
| // |
| // `MutexLock` is a helper class, which acquires and releases a `Mutex` via |
| // RAII. |
| // |
| // Example: |
| // |
| // Class Foo { |
| // |
| // Foo::Bar* Baz() { |
| // MutexLock l(&lock_); |
| // ... |
| // return bar; |
| // } |
| // |
| // private: |
| // Mutex lock_; |
| // }; |
| class SCOPED_LOCKABLE MutexLock { |
| public: |
| explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { |
| this->mu_->Lock(); |
| } |
| |
| MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex) |
| MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) |
| MutexLock& operator=(const MutexLock&) = delete; |
| MutexLock& operator=(MutexLock&&) = delete; |
| |
| ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); } |
| |
| private: |
| Mutex *const mu_; |
| }; |
| |
| // ReaderMutexLock |
| // |
| // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and |
| // releases a shared lock on a `Mutex` via RAII. |
| class SCOPED_LOCKABLE ReaderMutexLock { |
| public: |
| explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| mu->ReaderLock(); |
| } |
| |
| ReaderMutexLock(const ReaderMutexLock&) = delete; |
| ReaderMutexLock(ReaderMutexLock&&) = delete; |
| ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; |
| ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; |
| |
| ~ReaderMutexLock() UNLOCK_FUNCTION() { |
| this->mu_->ReaderUnlock(); |
| } |
| |
| private: |
| Mutex *const mu_; |
| }; |
| |
| // WriterMutexLock |
| // |
| // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and |
| // releases a write (exclusive) lock on a `Mutex` va RAII. |
| class SCOPED_LOCKABLE WriterMutexLock { |
| public: |
| explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| mu->WriterLock(); |
| } |
| |
| WriterMutexLock(const WriterMutexLock&) = delete; |
| WriterMutexLock(WriterMutexLock&&) = delete; |
| WriterMutexLock& operator=(const WriterMutexLock&) = delete; |
| WriterMutexLock& operator=(WriterMutexLock&&) = delete; |
| |
| ~WriterMutexLock() UNLOCK_FUNCTION() { |
| this->mu_->WriterUnlock(); |
| } |
| |
| private: |
| Mutex *const mu_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Condition |
| // ----------------------------------------------------------------------------- |
| // |
| // As noted above, `Mutex` contains a number of member functions which take a |
| // `Condition` as a argument; clients can wait for conditions to become `true` |
| // before attempting to acquire the mutex. These sections are known as |
| // "condition critical" sections. To use a `Condition`, you simply need to |
| // construct it, and use within an appropriate `Mutex` member function; |
| // everything else in the `Condition` class is an implementation detail. |
| // |
| // A `Condition` is specified as a function pointer which returns a boolean. |
| // `Condition` functions should be pure functions -- their results should depend |
| // only on passed arguments, should not consult any external state (such as |
| // clocks), and should have no side-effects, aside from debug logging. Any |
| // objects that the function may access should be limited to those which are |
| // constant while the mutex is blocked on the condition (e.g. a stack variable), |
| // or objects of state protected explicitly by the mutex. |
| // |
| // No matter which construction is used for `Condition`, the underlying |
| // function pointer / functor / callable must not throw any |
| // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in |
| // the face of a throwing `Condition`. (When Abseil is allowed to depend |
| // on C++17, these function pointers will be explicitly marked |
| // `noexcept`; until then this requirement cannot be enforced in the |
| // type system.) |
| // |
| // Note: to use a `Condition`, you need only construct it and pass it within the |
| // appropriate `Mutex' member function, such as `Mutex::Await()`. |
| // |
| // Example: |
| // |
| // // assume count_ is not internal reference count |
| // int count_ GUARDED_BY(mu_); |
| // |
| // mu_.LockWhen(Condition(+[](int* count) { return *count == 0; }, |
| // &count_)); |
| // |
| // When multiple threads are waiting on exactly the same condition, make sure |
| // that they are constructed with the same parameters (same pointer to function |
| // + arg, or same pointer to object + method), so that the mutex implementation |
| // can avoid redundantly evaluating the same condition for each thread. |
| class Condition { |
| public: |
| // A Condition that returns the result of "(*func)(arg)" |
| Condition(bool (*func)(void *), void *arg); |
| |
| // Templated version for people who are averse to casts. |
| // |
| // To use a lambda, prepend it with unary plus, which converts the lambda |
| // into a function pointer: |
| // Condition(+[](T* t) { return ...; }, arg). |
| // |
| // Note: lambdas in this case must contain no bound variables. |
| // |
| // See class comment for performance advice. |
| template<typename T> |
| Condition(bool (*func)(T *), T *arg); |
| |
| // Templated version for invoking a method that returns a `bool`. |
| // |
| // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates |
| // `object->Method()`. |
| // |
| // Implementation Note: `absl::internal::identity` is used to allow methods to |
| // come from base classes. A simpler signature like |
| // `Condition(T*, bool (T::*)())` does not suffice. |
| template<typename T> |
| Condition(T *object, bool (absl::internal::identity<T>::type::* method)()); |
| |
| // Same as above, for const members |
| template<typename T> |
| Condition(const T *object, |
| bool (absl::internal::identity<T>::type::* method)() const); |
| |
| // A Condition that returns the value of `*cond` |
| explicit Condition(const bool *cond); |
| |
| // Templated version for invoking a functor that returns a `bool`. |
| // This approach accepts pointers to non-mutable lambdas, `std::function`, |
| // the result of` std::bind` and user-defined functors that define |
| // `bool F::operator()() const`. |
| // |
| // Example: |
| // |
| // auto reached = [this, current]() { |
| // mu_.AssertReaderHeld(); // For annotalysis. |
| // return processed_ >= current; |
| // }; |
| // mu_.Await(Condition(&reached)); |
| |
| // See class comment for performance advice. In particular, if there |
| // might be more than one waiter for the same condition, make sure |
| // that all waiters construct the condition with the same pointers. |
| |
| // Implementation note: The second template parameter ensures that this |
| // constructor doesn't participate in overload resolution if T doesn't have |
| // `bool operator() const`. |
| template <typename T, typename E = decltype( |
| static_cast<bool (T::*)() const>(&T::operator()))> |
| explicit Condition(const T *obj) |
| : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {} |
| |
| // A Condition that always returns `true`. |
| static const Condition kTrue; |
| |
| // Evaluates the condition. |
| bool Eval() const; |
| |
| // Returns `true` if the two conditions are guaranteed to return the same |
| // value if evaluated at the same time, `false` if the evaluation *may* return |
| // different results. |
| // |
| // Two `Condition` values are guaranteed equal if both their `func` and `arg` |
| // components are the same. A null pointer is equivalent to a `true` |
| // condition. |
| static bool GuaranteedEqual(const Condition *a, const Condition *b); |
| |
| private: |
| typedef bool (*InternalFunctionType)(void * arg); |
| typedef bool (Condition::*InternalMethodType)(); |
| typedef bool (*InternalMethodCallerType)(void * arg, |
| InternalMethodType internal_method); |
| |
| bool (*eval_)(const Condition*); // Actual evaluator |
| InternalFunctionType function_; // function taking pointer returning bool |
| InternalMethodType method_; // method returning bool |
| void *arg_; // arg of function_ or object of method_ |
| |
| Condition(); // null constructor used only to create kTrue |
| |
| // Various functions eval_ can point to: |
| static bool CallVoidPtrFunction(const Condition*); |
| template <typename T> static bool CastAndCallFunction(const Condition* c); |
| template <typename T> static bool CastAndCallMethod(const Condition* c); |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // CondVar |
| // ----------------------------------------------------------------------------- |
| // |
| // A condition variable, reflecting state evaluated separately outside of the |
| // `Mutex` object, which can be signaled to wake callers. |
| // This class is not normally needed; use `Mutex` member functions such as |
| // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases |
| // with many threads and many conditions, `CondVar` may be faster. |
| // |
| // The implementation may deliver signals to any condition variable at |
| // any time, even when no call to `Signal()` or `SignalAll()` is made; as a |
| // result, upon being awoken, you must check the logical condition you have |
| // been waiting upon. |
| // |
| // Examples: |
| // |
| // Usage for a thread waiting for some condition C protected by mutex mu: |
| // mu.Lock(); |
| // while (!C) { cv->Wait(&mu); } // releases and reacquires mu |
| // // C holds; process data |
| // mu.Unlock(); |
| // |
| // Usage to wake T is: |
| // mu.Lock(); |
| // // process data, possibly establishing C |
| // if (C) { cv->Signal(); } |
| // mu.Unlock(); |
| // |
| // If C may be useful to more than one waiter, use `SignalAll()` instead of |
| // `Signal()`. |
| // |
| // With this implementation it is efficient to use `Signal()/SignalAll()` inside |
| // the locked region; this usage can make reasoning about your program easier. |
| // |
| class CondVar { |
| public: |
| CondVar(); |
| ~CondVar(); |
| |
| // CondVar::Wait() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), then reacquires the `Mutex` and returns. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| void Wait(Mutex *mu); |
| |
| // CondVar::WaitWithTimeout() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), or until the timeout has expired, then reacquires |
| // the `Mutex` and returns. |
| // |
| // Returns true if the timeout has expired without this `CondVar` |
| // being signalled in any manner. If both the timeout has expired |
| // and this `CondVar` has been signalled, the implementation is free |
| // to return `true` or `false`. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| bool WaitWithTimeout(Mutex *mu, absl::Duration timeout); |
| |
| // CondVar::WaitWithDeadline() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), or until the deadline has passed, then reacquires |
| // the `Mutex` and returns. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| // |
| // Returns true if the deadline has passed without this `CondVar` |
| // being signalled in any manner. If both the deadline has passed |
| // and this `CondVar` has been signalled, the implementation is free |
| // to return `true` or `false`. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| bool WaitWithDeadline(Mutex *mu, absl::Time deadline); |
| |
| // CondVar::Signal() |
| // |
| // Signal this `CondVar`; wake at least one waiter if one exists. |
| void Signal(); |
| |
| // CondVar::SignalAll() |
| // |
| // Signal this `CondVar`; wake all waiters. |
| void SignalAll(); |
| |
| // CondVar::EnableDebugLog() |
| // |
| // Causes all subsequent uses of this `CondVar` to be logged via |
| // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. |
| // Note: this method substantially reduces `CondVar` performance. |
| void EnableDebugLog(const char *name); |
| |
| private: |
| #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| synchronization_internal::CondVarImpl *impl() { return impl_.get(); } |
| synchronization_internal::SynchronizationStorage< |
| synchronization_internal::CondVarImpl> |
| impl_; |
| #else |
| bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t); |
| void Remove(base_internal::PerThreadSynch *s); |
| void Wakeup(base_internal::PerThreadSynch *w); |
| std::atomic<intptr_t> cv_; // Condition variable state. |
| #endif |
| CondVar(const CondVar&) = delete; |
| CondVar& operator=(const CondVar&) = delete; |
| }; |
| |
| |
| // Variants of MutexLock. |
| // |
| // If you find yourself using one of these, consider instead using |
| // Mutex::Unlock() and/or if-statements for clarity. |
| |
| // MutexLockMaybe |
| // |
| // MutexLockMaybe is like MutexLock, but is a no-op when mu is null. |
| class SCOPED_LOCKABLE MutexLockMaybe { |
| public: |
| explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } } |
| ~MutexLockMaybe() UNLOCK_FUNCTION() { |
| if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
| } |
| private: |
| Mutex *const mu_; |
| MutexLockMaybe(const MutexLockMaybe&) = delete; |
| MutexLockMaybe(MutexLockMaybe&&) = delete; |
| MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; |
| MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; |
| }; |
| |
| // ReleasableMutexLock |
| // |
| // ReleasableMutexLock is like MutexLock, but permits `Release()` of its |
| // mutex before destruction. `Release()` may be called at most once. |
| class SCOPED_LOCKABLE ReleasableMutexLock { |
| public: |
| explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| this->mu_->Lock(); |
| } |
| ~ReleasableMutexLock() UNLOCK_FUNCTION() { |
| if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
| } |
| |
| void Release() UNLOCK_FUNCTION(); |
| |
| private: |
| Mutex *mu_; |
| ReleasableMutexLock(const ReleasableMutexLock&) = delete; |
| ReleasableMutexLock(ReleasableMutexLock&&) = delete; |
| ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; |
| ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; |
| }; |
| |
| #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
| #else |
| inline Mutex::Mutex() : mu_(0) { |
| ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); |
| } |
| |
| inline CondVar::CondVar() : cv_(0) {} |
| #endif |
| |
| // static |
| template <typename T> |
| bool Condition::CastAndCallMethod(const Condition *c) { |
| typedef bool (T::*MemberType)(); |
| MemberType rm = reinterpret_cast<MemberType>(c->method_); |
| T *x = static_cast<T *>(c->arg_); |
| return (x->*rm)(); |
| } |
| |
| // static |
| template <typename T> |
| bool Condition::CastAndCallFunction(const Condition *c) { |
| typedef bool (*FuncType)(T *); |
| FuncType fn = reinterpret_cast<FuncType>(c->function_); |
| T *x = static_cast<T *>(c->arg_); |
| return (*fn)(x); |
| } |
| |
| template <typename T> |
| inline Condition::Condition(bool (*func)(T *), T *arg) |
| : eval_(&CastAndCallFunction<T>), |
| function_(reinterpret_cast<InternalFunctionType>(func)), |
| method_(nullptr), |
| arg_(const_cast<void *>(static_cast<const void *>(arg))) {} |
| |
| template <typename T> |
| inline Condition::Condition(T *object, |
| bool (absl::internal::identity<T>::type::*method)()) |
| : eval_(&CastAndCallMethod<T>), |
| function_(nullptr), |
| method_(reinterpret_cast<InternalMethodType>(method)), |
| arg_(object) {} |
| |
| template <typename T> |
| inline Condition::Condition(const T *object, |
| bool (absl::internal::identity<T>::type::*method)() |
| const) |
| : eval_(&CastAndCallMethod<T>), |
| function_(nullptr), |
| method_(reinterpret_cast<InternalMethodType>(method)), |
| arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {} |
| |
| // Register a hook for profiling support. |
| // |
| // The function pointer registered here will be called whenever a mutex is |
| // contended. The callback is given the absl/base/cycleclock.h timestamp when |
| // waiting began. |
| // |
| // Calls to this function do not race or block, but there is no ordering |
| // guaranteed between calls to this function and call to the provided hook. |
| // In particular, the previously registered hook may still be called for some |
| // time after this function returns. |
| void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)); |
| |
| // Register a hook for Mutex tracing. |
| // |
| // The function pointer registered here will be called whenever a mutex is |
| // contended. The callback is given an opaque handle to the contended mutex, |
| // an event name, and the number of wait cycles (as measured by |
| // //absl/base/internal/cycleclock.h, and which may not be real |
| // "cycle" counts.) |
| // |
| // The only event name currently sent is "slow release". |
| // |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, |
| int64_t wait_cycles)); |
| |
| // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer() |
| // into a single interface, since they are only ever called in pairs. |
| |
| // Register a hook for CondVar tracing. |
| // |
| // The function pointer registered here will be called here on various CondVar |
| // events. The callback is given an opaque handle to the CondVar object and |
| // a std::string identifying the event. This is thread-safe, but only a single |
| // tracer can be registered. |
| // |
| // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and |
| // "SignalAll wakeup". |
| // |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)); |
| |
| // Register a hook for symbolizing stack traces in deadlock detector reports. |
| // |
| // 'pc' is the program counter being symbolized, 'out' is the buffer to write |
| // into, and 'out_size' is the size of the buffer. This function can return |
| // false if symbolizing failed, or true if a null-terminated symbol was written |
| // to 'out.' |
| // |
| // This has the same memory ordering concerns as RegisterMutexProfiler() above. |
| // |
| // DEPRECATED: The default symbolizer function is absl::Symbolize() and the |
| // ability to register a different hook for symbolizing stack traces will be |
| // removed on or after 2023-05-01. |
| ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " |
| "on or after 2023-05-01") |
| void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)); |
| |
| // EnableMutexInvariantDebugging() |
| // |
| // Enable or disable global support for Mutex invariant debugging. If enabled, |
| // then invariant predicates can be registered per-Mutex for debug checking. |
| // See Mutex::EnableInvariantDebugging(). |
| void EnableMutexInvariantDebugging(bool enabled); |
| |
| // When in debug mode, and when the feature has been enabled globally, the |
| // implementation will keep track of lock ordering and complain (or optionally |
| // crash) if a cycle is detected in the acquired-before graph. |
| |
| // Possible modes of operation for the deadlock detector in debug mode. |
| enum class OnDeadlockCycle { |
| kIgnore, // Neither report on nor attempt to track cycles in lock ordering |
| kReport, // Report lock cycles to stderr when detected |
| kAbort, // Report lock cycles to stderr when detected, then abort |
| }; |
| |
| // SetMutexDeadlockDetectionMode() |
| // |
| // Enable or disable global support for detection of potential deadlocks |
| // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of |
| // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph |
| // will be maintained internally, and detected cycles will be reported in |
| // the manner chosen here. |
| void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); |
| |
| } // namespace absl |
| |
| // In some build configurations we pass --detect-odr-violations to the |
| // gold linker. This causes it to flag weak symbol overrides as ODR |
| // violations. Because ODR only applies to C++ and not C, |
| // --detect-odr-violations ignores symbols not mangled with C++ names. |
| // By changing our extension points to be extern "C", we dodge this |
| // check. |
| extern "C" { |
| void AbslInternalMutexYield(); |
| } // extern "C" |
| #endif // ABSL_SYNCHRONIZATION_MUTEX_H_ |