| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_audio/smoothing_filter.h" |
| |
| #include <cmath> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/time_utils.h" |
| |
| namespace webrtc { |
| |
| SmoothingFilterImpl::SmoothingFilterImpl(int init_time_ms) |
| : init_time_ms_(init_time_ms), |
| // Duing the initalization time, we use an increasing alpha. Specifically, |
| // alpha(n) = exp(-powf(init_factor_, n)), |
| // where |init_factor_| is chosen such that |
| // alpha(init_time_ms_) = exp(-1.0f / init_time_ms_), |
| init_factor_(init_time_ms_ == 0 |
| ? 0.0f |
| : powf(init_time_ms_, -1.0f / init_time_ms_)), |
| // |init_const_| is to a factor to help the calculation during |
| // initialization phase. |
| init_const_(init_time_ms_ == 0 |
| ? 0.0f |
| : init_time_ms_ - |
| powf(init_time_ms_, 1.0f - 1.0f / init_time_ms_)) { |
| UpdateAlpha(init_time_ms_); |
| } |
| |
| SmoothingFilterImpl::~SmoothingFilterImpl() = default; |
| |
| void SmoothingFilterImpl::AddSample(float sample) { |
| const int64_t now_ms = rtc::TimeMillis(); |
| |
| if (!init_end_time_ms_) { |
| // This is equivalent to assuming the filter has been receiving the same |
| // value as the first sample since time -infinity. |
| state_ = last_sample_ = sample; |
| init_end_time_ms_ = now_ms + init_time_ms_; |
| last_state_time_ms_ = now_ms; |
| return; |
| } |
| |
| ExtrapolateLastSample(now_ms); |
| last_sample_ = sample; |
| } |
| |
| absl::optional<float> SmoothingFilterImpl::GetAverage() { |
| if (!init_end_time_ms_) { |
| // |init_end_time_ms_| undefined since we have not received any sample. |
| return absl::nullopt; |
| } |
| ExtrapolateLastSample(rtc::TimeMillis()); |
| return state_; |
| } |
| |
| bool SmoothingFilterImpl::SetTimeConstantMs(int time_constant_ms) { |
| if (!init_end_time_ms_ || last_state_time_ms_ < *init_end_time_ms_) { |
| return false; |
| } |
| UpdateAlpha(time_constant_ms); |
| return true; |
| } |
| |
| void SmoothingFilterImpl::UpdateAlpha(int time_constant_ms) { |
| alpha_ = time_constant_ms == 0 ? 0.0f : exp(-1.0f / time_constant_ms); |
| } |
| |
| void SmoothingFilterImpl::ExtrapolateLastSample(int64_t time_ms) { |
| RTC_DCHECK_GE(time_ms, last_state_time_ms_); |
| RTC_DCHECK(init_end_time_ms_); |
| |
| float multiplier = 0.0f; |
| |
| if (time_ms <= *init_end_time_ms_) { |
| // Current update is to be made during initialization phase. |
| // We update the state as if the |alpha| has been increased according |
| // alpha(n) = exp(-powf(init_factor_, n)), |
| // where n is the time (in millisecond) since the first sample received. |
| // With algebraic derivation as shown in the Appendix, we can find that the |
| // state can be updated in a similar manner as if alpha is a constant, |
| // except for a different multiplier. |
| if (init_time_ms_ == 0) { |
| // This means |init_factor_| = 0. |
| multiplier = 0.0f; |
| } else if (init_time_ms_ == 1) { |
| // This means |init_factor_| = 1. |
| multiplier = exp(last_state_time_ms_ - time_ms); |
| } else { |
| multiplier = |
| exp(-(powf(init_factor_, last_state_time_ms_ - *init_end_time_ms_) - |
| powf(init_factor_, time_ms - *init_end_time_ms_)) / |
| init_const_); |
| } |
| } else { |
| if (last_state_time_ms_ < *init_end_time_ms_) { |
| // The latest state update was made during initialization phase. |
| // We first extrapolate to the initialization time. |
| ExtrapolateLastSample(*init_end_time_ms_); |
| // Then extrapolate the rest by the following. |
| } |
| multiplier = powf(alpha_, time_ms - last_state_time_ms_); |
| } |
| |
| state_ = multiplier * state_ + (1.0f - multiplier) * last_sample_; |
| last_state_time_ms_ = time_ms; |
| } |
| |
| } // namespace webrtc |
| |
| // Appendix: derivation of extrapolation during initialization phase. |
| // (LaTeX syntax) |
| // Assuming |
| // \begin{align} |
| // y(n) &= \alpha_{n-1} y(n-1) + \left(1 - \alpha_{n-1}\right) x(m) \\* |
| // &= \left(\prod_{i=m}^{n-1} \alpha_i\right) y(m) + |
| // \left(1 - \prod_{i=m}^{n-1} \alpha_i \right) x(m) |
| // \end{align} |
| // Taking $\alpha_{n} = \exp(-\gamma^n)$, $\gamma$ denotes init\_factor\_, the |
| // multiplier becomes |
| // \begin{align} |
| // \prod_{i=m}^{n-1} \alpha_i |
| // &= \exp\left(-\sum_{i=m}^{n-1} \gamma^i \right) \\* |
| // &= \begin{cases} |
| // \exp\left(-\frac{\gamma^m - \gamma^n}{1 - \gamma} \right) |
| // & \gamma \neq 1 \\* |
| // m-n & \gamma = 1 |
| // \end{cases} |
| // \end{align} |
| // We know $\gamma = T^{-\frac{1}{T}}$, where $T$ denotes init\_time\_ms\_. Then |
| // $1 - \gamma$ approaches zero when $T$ increases. This can cause numerical |
| // difficulties. We multiply $T$ (if $T > 0$) to both numerator and denominator |
| // in the fraction. See. |
| // \begin{align} |
| // \frac{\gamma^m - \gamma^n}{1 - \gamma} |
| // &= \frac{T^\frac{T-m}{T} - T^\frac{T-n}{T}}{T - T^{1-\frac{1}{T}}} |
| // \end{align} |