blob: 612f85bf6187de3fa599255c79959c13773ab5f5 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <deque>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include "logging/rtc_event_log/encoder/rtc_event_log_encoder_legacy.h"
#include "logging/rtc_event_log/encoder/rtc_event_log_encoder_new_format.h"
#include "logging/rtc_event_log/encoder/rtc_event_log_encoder_v3.h"
#include "logging/rtc_event_log/events/rtc_event_alr_state.h"
#include "logging/rtc_event_log/events/rtc_event_audio_network_adaptation.h"
#include "logging/rtc_event_log/events/rtc_event_audio_playout.h"
#include "logging/rtc_event_log/events/rtc_event_audio_receive_stream_config.h"
#include "logging/rtc_event_log/events/rtc_event_audio_send_stream_config.h"
#include "logging/rtc_event_log/events/rtc_event_bwe_update_delay_based.h"
#include "logging/rtc_event_log/events/rtc_event_bwe_update_loss_based.h"
#include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h"
#include "logging/rtc_event_log/events/rtc_event_probe_result_failure.h"
#include "logging/rtc_event_log/events/rtc_event_probe_result_success.h"
#include "logging/rtc_event_log/events/rtc_event_rtcp_packet_incoming.h"
#include "logging/rtc_event_log/events/rtc_event_rtcp_packet_outgoing.h"
#include "logging/rtc_event_log/events/rtc_event_rtp_packet_incoming.h"
#include "logging/rtc_event_log/events/rtc_event_rtp_packet_outgoing.h"
#include "logging/rtc_event_log/events/rtc_event_video_receive_stream_config.h"
#include "logging/rtc_event_log/events/rtc_event_video_send_stream_config.h"
#include "logging/rtc_event_log/rtc_event_log_parser.h"
#include "logging/rtc_event_log/rtc_event_log_unittest_helper.h"
#include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor_config.h"
#include "modules/rtp_rtcp/source/rtcp_packet/bye.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/random.h"
#include "test/field_trial.h"
#include "test/gtest.h"
namespace webrtc {
class RtcEventLogEncoderTest
: public ::testing::TestWithParam<
std::tuple<int, RtcEventLog::EncodingType, size_t, bool>> {
protected:
RtcEventLogEncoderTest()
: seed_(std::get<0>(GetParam())),
prng_(seed_),
encoding_type_(std::get<1>(GetParam())),
event_count_(std::get<2>(GetParam())),
force_repeated_fields_(std::get<3>(GetParam())),
gen_(seed_ * 880001UL),
verifier_(encoding_type_) {
switch (encoding_type_) {
case RtcEventLog::EncodingType::Legacy:
encoder_ = std::make_unique<RtcEventLogEncoderLegacy>();
break;
case RtcEventLog::EncodingType::NewFormat:
encoder_ = std::make_unique<RtcEventLogEncoderNewFormat>();
break;
case RtcEventLog::EncodingType::ProtoFree:
encoder_ = std::make_unique<RtcEventLogEncoderV3>();
break;
}
encoded_ =
encoder_->EncodeLogStart(rtc::TimeMillis(), rtc::TimeUTCMillis());
}
~RtcEventLogEncoderTest() override = default;
// ANA events have some optional fields, so we want to make sure that we get
// correct behavior both when all of the values are there, as well as when
// only some.
void TestRtcEventAudioNetworkAdaptation(
const std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>>&);
template <typename EventType>
std::unique_ptr<EventType> NewRtpPacket(
uint32_t ssrc,
const RtpHeaderExtensionMap& extension_map);
template <typename ParsedType>
const std::vector<ParsedType>* GetRtpPacketsBySsrc(
const ParsedRtcEventLog* parsed_log,
uint32_t ssrc);
template <typename EventType, typename ParsedType>
void TestRtpPackets();
std::deque<std::unique_ptr<RtcEvent>> history_;
std::unique_ptr<RtcEventLogEncoder> encoder_;
ParsedRtcEventLog parsed_log_;
const uint64_t seed_;
Random prng_;
const RtcEventLog::EncodingType encoding_type_;
const size_t event_count_;
const bool force_repeated_fields_;
test::EventGenerator gen_;
test::EventVerifier verifier_;
std::string encoded_;
};
void RtcEventLogEncoderTest::TestRtcEventAudioNetworkAdaptation(
const std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>>&
events) {
ASSERT_TRUE(history_.empty()) << "Function should be called once per test.";
for (auto& event : events) {
history_.push_back(event->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& ana_configs = parsed_log_.audio_network_adaptation_events();
ASSERT_EQ(ana_configs.size(), events.size());
for (size_t i = 0; i < events.size(); ++i) {
verifier_.VerifyLoggedAudioNetworkAdaptationEvent(*events[i],
ana_configs[i]);
}
}
template <>
std::unique_ptr<RtcEventRtpPacketIncoming> RtcEventLogEncoderTest::NewRtpPacket(
uint32_t ssrc,
const RtpHeaderExtensionMap& extension_map) {
return gen_.NewRtpPacketIncoming(ssrc, extension_map, false);
}
template <>
std::unique_ptr<RtcEventRtpPacketOutgoing> RtcEventLogEncoderTest::NewRtpPacket(
uint32_t ssrc,
const RtpHeaderExtensionMap& extension_map) {
return gen_.NewRtpPacketOutgoing(ssrc, extension_map, false);
}
template <>
const std::vector<LoggedRtpPacketIncoming>*
RtcEventLogEncoderTest::GetRtpPacketsBySsrc(const ParsedRtcEventLog* parsed_log,
uint32_t ssrc) {
const auto& incoming_streams = parsed_log->incoming_rtp_packets_by_ssrc();
for (const auto& stream : incoming_streams) {
if (stream.ssrc == ssrc) {
return &stream.incoming_packets;
}
}
return nullptr;
}
template <>
const std::vector<LoggedRtpPacketOutgoing>*
RtcEventLogEncoderTest::GetRtpPacketsBySsrc(const ParsedRtcEventLog* parsed_log,
uint32_t ssrc) {
const auto& outgoing_streams = parsed_log->outgoing_rtp_packets_by_ssrc();
for (const auto& stream : outgoing_streams) {
if (stream.ssrc == ssrc) {
return &stream.outgoing_packets;
}
}
return nullptr;
}
template <typename EventType, typename ParsedType>
void RtcEventLogEncoderTest::TestRtpPackets() {
// SSRCs will be randomly assigned out of this small pool, significant only
// in that it also covers such edge cases as SSRC = 0 and SSRC = 0xffffffff.
// The pool is intentionally small, so as to produce collisions.
const std::vector<uint32_t> kSsrcPool = {0x00000000, 0x12345678, 0xabcdef01,
0xffffffff, 0x20171024, 0x19840730,
0x19831230};
// TODO(terelius): Test extensions for legacy encoding, too.
RtpHeaderExtensionMap extension_map;
if (encoding_type_ != RtcEventLog::EncodingType::Legacy) {
extension_map = gen_.NewRtpHeaderExtensionMap(true);
}
// Simulate `event_count_` RTP packets, with SSRCs assigned randomly
// out of the small pool above.
std::map<uint32_t, std::vector<std::unique_ptr<EventType>>> events_by_ssrc;
for (size_t i = 0; i < event_count_; ++i) {
const uint32_t ssrc = kSsrcPool[prng_.Rand(kSsrcPool.size() - 1)];
std::unique_ptr<EventType> event =
(events_by_ssrc[ssrc].empty() || !force_repeated_fields_)
? NewRtpPacket<EventType>(ssrc, extension_map)
: events_by_ssrc[ssrc][0]->Copy();
history_.push_back(event->Copy());
events_by_ssrc[ssrc].emplace_back(std::move(event));
}
// Encode and parse.
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
// For each SSRC, make sure the RTP packets associated with it to have been
// correctly encoded and parsed.
for (auto it = events_by_ssrc.begin(); it != events_by_ssrc.end(); ++it) {
const uint32_t ssrc = it->first;
const auto& original_packets = it->second;
const std::vector<ParsedType>* parsed_rtp_packets =
GetRtpPacketsBySsrc<ParsedType>(&parsed_log_, ssrc);
ASSERT_NE(parsed_rtp_packets, nullptr);
ASSERT_EQ(original_packets.size(), parsed_rtp_packets->size());
for (size_t i = 0; i < original_packets.size(); ++i) {
verifier_.VerifyLoggedRtpPacket<EventType, ParsedType>(
*original_packets[i], (*parsed_rtp_packets)[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventAlrState) {
std::vector<std::unique_ptr<RtcEventAlrState>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_) ? gen_.NewAlrState()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& alr_state_events = parsed_log_.alr_state_events();
ASSERT_EQ(alr_state_events.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedAlrStateEvent(*events[i], alr_state_events[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRouteChange) {
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
return;
}
std::vector<std::unique_ptr<RtcEventRouteChange>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_) ? gen_.NewRouteChange()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& route_change_events = parsed_log_.route_change_events();
ASSERT_EQ(route_change_events.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedRouteChangeEvent(*events[i], route_change_events[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRemoteEstimate) {
std::vector<std::unique_ptr<RtcEventRemoteEstimate>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewRemoteEstimate()
: std::make_unique<RtcEventRemoteEstimate>(*events[0]);
history_.push_back(std::make_unique<RtcEventRemoteEstimate>(*events[i]));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& parsed_events = parsed_log_.remote_estimate_events();
ASSERT_EQ(parsed_events.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedRemoteEstimateEvent(*events[i], parsed_events[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationBitrate) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
const int bitrate_bps = rtc::checked_cast<int>(
prng_.Rand(0, std::numeric_limits<int32_t>::max()));
runtime_config->bitrate_bps = bitrate_bps;
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationFrameLength) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
const int frame_length_ms = prng_.Rand(1, 1000);
runtime_config->frame_length_ms = frame_length_ms;
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationPacketLoss) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
// To simplify the test, we just check powers of two.
const float plr = std::pow(0.5f, prng_.Rand(1, 8));
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
runtime_config->uplink_packet_loss_fraction = plr;
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationFec) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
runtime_config->enable_fec = prng_.Rand<bool>();
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationDtx) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
runtime_config->enable_dtx = prng_.Rand<bool>();
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationChannels) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
runtime_config->num_channels = prng_.Rand(1, 2);
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioNetworkAdaptationAll) {
std::vector<std::unique_ptr<RtcEventAudioNetworkAdaptation>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
if (i == 0 || !force_repeated_fields_) {
auto runtime_config = std::make_unique<AudioEncoderRuntimeConfig>();
runtime_config->bitrate_bps = rtc::checked_cast<int>(
prng_.Rand(0, std::numeric_limits<int32_t>::max()));
runtime_config->frame_length_ms = prng_.Rand(1, 1000);
runtime_config->uplink_packet_loss_fraction =
std::pow(0.5f, prng_.Rand(1, 8));
runtime_config->enable_fec = prng_.Rand<bool>();
runtime_config->enable_dtx = prng_.Rand<bool>();
runtime_config->num_channels = prng_.Rand(1, 2);
events[i] = std::make_unique<RtcEventAudioNetworkAdaptation>(
std::move(runtime_config));
} else {
events[i] = events[0]->Copy();
}
}
TestRtcEventAudioNetworkAdaptation(events);
}
TEST_P(RtcEventLogEncoderTest, RtcEventAudioPlayout) {
// SSRCs will be randomly assigned out of this small pool, significant only
// in that it also covers such edge cases as SSRC = 0 and SSRC = 0xffffffff.
// The pool is intentionally small, so as to produce collisions.
const std::vector<uint32_t> kSsrcPool = {0x00000000, 0x12345678, 0xabcdef01,
0xffffffff, 0x20171024, 0x19840730,
0x19831230};
std::map<uint32_t, std::vector<std::unique_ptr<RtcEventAudioPlayout>>>
original_events_by_ssrc;
for (size_t i = 0; i < event_count_; ++i) {
const uint32_t ssrc = kSsrcPool[prng_.Rand(kSsrcPool.size() - 1)];
std::unique_ptr<RtcEventAudioPlayout> event =
(original_events_by_ssrc[ssrc].empty() || !force_repeated_fields_)
? gen_.NewAudioPlayout(ssrc)
: original_events_by_ssrc[ssrc][0]->Copy();
history_.push_back(event->Copy());
original_events_by_ssrc[ssrc].push_back(std::move(event));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& parsed_playout_events_by_ssrc =
parsed_log_.audio_playout_events();
// Same number of distinct SSRCs.
ASSERT_EQ(parsed_playout_events_by_ssrc.size(),
original_events_by_ssrc.size());
for (auto& original_event_it : original_events_by_ssrc) {
const uint32_t ssrc = original_event_it.first;
const auto& original_playout_events = original_event_it.second;
const auto& parsed_event_it = parsed_playout_events_by_ssrc.find(ssrc);
ASSERT_TRUE(parsed_event_it != parsed_playout_events_by_ssrc.end());
const auto& parsed_playout_events = parsed_event_it->second;
// Same number playout events for the SSRC under examination.
ASSERT_EQ(original_playout_events.size(), parsed_playout_events.size());
for (size_t i = 0; i < original_playout_events.size(); ++i) {
verifier_.VerifyLoggedAudioPlayoutEvent(*original_playout_events[i],
parsed_playout_events[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventNetEqSetMinimumDelayDecoded) {
// SSRCs will be randomly assigned out of this small pool, significant only
// in that it also covers such edge cases as SSRC = 0 and SSRC = 0xffffffff.
// The pool is intentionally small, so as to produce collisions.
const std::vector<uint32_t> kSsrcPool = {0x00000000, 0x12345678, 0xabcdef01,
0xffffffff, 0x20171024, 0x19840730,
0x19831230};
std::map<uint32_t, std::vector<std::unique_ptr<RtcEventNetEqSetMinimumDelay>>>
original_events_by_ssrc;
for (size_t i = 0; i < event_count_; ++i) {
const uint32_t ssrc = kSsrcPool[prng_.Rand(kSsrcPool.size() - 1)];
std::unique_ptr<RtcEventNetEqSetMinimumDelay> event =
(original_events_by_ssrc[ssrc].empty() || !force_repeated_fields_)
? gen_.NewNetEqSetMinimumDelay(ssrc)
: original_events_by_ssrc[ssrc][0]->Copy();
history_.push_back(event->Copy());
original_events_by_ssrc[ssrc].push_back(std::move(event));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& parsed_neteq_set_minimum_delay_events_by_ssrc =
parsed_log_.neteq_set_minimum_delay_events();
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
ASSERT_EQ(parsed_neteq_set_minimum_delay_events_by_ssrc.size(), 0u);
return;
}
// Same number of distinct SSRCs.
ASSERT_EQ(parsed_neteq_set_minimum_delay_events_by_ssrc.size(),
original_events_by_ssrc.size());
for (auto& original_event_it : original_events_by_ssrc) {
const uint32_t ssrc = original_event_it.first;
const auto& original_neteq_set_minimum_delay_events =
original_event_it.second;
const auto& parsed_event_it =
parsed_neteq_set_minimum_delay_events_by_ssrc.find(ssrc);
ASSERT_TRUE(parsed_event_it !=
parsed_neteq_set_minimum_delay_events_by_ssrc.end());
const auto& parsed_neteq_set_minimum_delay_events = parsed_event_it->second;
// Same number playout events for the SSRC under examination.
ASSERT_EQ(original_neteq_set_minimum_delay_events.size(),
parsed_neteq_set_minimum_delay_events.size());
for (size_t i = 0; i < original_neteq_set_minimum_delay_events.size();
++i) {
verifier_.VerifyLoggedNetEqSetMinimumDelay(
*original_neteq_set_minimum_delay_events[i],
parsed_neteq_set_minimum_delay_events[i]);
}
}
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventAudioReceiveStreamConfig) {
uint32_t ssrc = prng_.Rand<uint32_t>();
RtpHeaderExtensionMap extensions = gen_.NewRtpHeaderExtensionMap();
std::unique_ptr<RtcEventAudioReceiveStreamConfig> event =
gen_.NewAudioReceiveStreamConfig(ssrc, extensions);
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& audio_recv_configs = parsed_log_.audio_recv_configs();
ASSERT_EQ(audio_recv_configs.size(), 1u);
verifier_.VerifyLoggedAudioRecvConfig(*event, audio_recv_configs[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventAudioSendStreamConfig) {
uint32_t ssrc = prng_.Rand<uint32_t>();
RtpHeaderExtensionMap extensions = gen_.NewRtpHeaderExtensionMap();
std::unique_ptr<RtcEventAudioSendStreamConfig> event =
gen_.NewAudioSendStreamConfig(ssrc, extensions);
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& audio_send_configs = parsed_log_.audio_send_configs();
ASSERT_EQ(audio_send_configs.size(), 1u);
verifier_.VerifyLoggedAudioSendConfig(*event, audio_send_configs[0]);
}
TEST_P(RtcEventLogEncoderTest, RtcEventBweUpdateDelayBased) {
std::vector<std::unique_ptr<RtcEventBweUpdateDelayBased>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewBweUpdateDelayBased()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& bwe_delay_updates = parsed_log_.bwe_delay_updates();
ASSERT_EQ(bwe_delay_updates.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedBweDelayBasedUpdate(*events[i], bwe_delay_updates[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventBweUpdateLossBased) {
std::vector<std::unique_ptr<RtcEventBweUpdateLossBased>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewBweUpdateLossBased()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& bwe_loss_updates = parsed_log_.bwe_loss_updates();
ASSERT_EQ(bwe_loss_updates.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedBweLossBasedUpdate(*events[i], bwe_loss_updates[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventGenericPacketReceived) {
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
return;
}
std::vector<std::unique_ptr<RtcEventGenericPacketReceived>> events(
event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewGenericPacketReceived()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& packets_received = parsed_log_.generic_packets_received();
ASSERT_EQ(packets_received.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedGenericPacketReceived(*events[i],
packets_received[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventGenericPacketSent) {
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
return;
}
std::vector<std::unique_ptr<RtcEventGenericPacketSent>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewGenericPacketSent()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& packets_sent = parsed_log_.generic_packets_sent();
ASSERT_EQ(packets_sent.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedGenericPacketSent(*events[i], packets_sent[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventGenericAcksReceived) {
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
return;
}
std::vector<std::unique_ptr<RtcEventGenericAckReceived>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewGenericAckReceived()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& decoded_events = parsed_log_.generic_acks_received();
ASSERT_EQ(decoded_events.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedGenericAckReceived(*events[i], decoded_events[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventDtlsTransportState) {
std::vector<std::unique_ptr<RtcEventDtlsTransportState>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewDtlsTransportState()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& dtls_transport_states = parsed_log_.dtls_transport_states();
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
ASSERT_EQ(dtls_transport_states.size(), 0u);
return;
}
ASSERT_EQ(dtls_transport_states.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedDtlsTransportState(*events[i],
dtls_transport_states[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventDtlsWritableState) {
std::vector<std::unique_ptr<RtcEventDtlsWritableState>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewDtlsWritableState()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& dtls_writable_states = parsed_log_.dtls_writable_states();
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
ASSERT_EQ(dtls_writable_states.size(), 0u);
return;
}
ASSERT_EQ(dtls_writable_states.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedDtlsWritableState(*events[i],
dtls_writable_states[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventFrameDecoded) {
// SSRCs will be randomly assigned out of this small pool, significant only
// in that it also covers such edge cases as SSRC = 0 and SSRC = 0xffffffff.
// The pool is intentionally small, so as to produce collisions.
const std::vector<uint32_t> kSsrcPool = {0x00000000, 0x12345678, 0xabcdef01,
0xffffffff, 0x20171024, 0x19840730,
0x19831230};
std::map<uint32_t, std::vector<std::unique_ptr<RtcEventFrameDecoded>>>
original_events_by_ssrc;
for (size_t i = 0; i < event_count_; ++i) {
const uint32_t ssrc = kSsrcPool[prng_.Rand(kSsrcPool.size() - 1)];
std::unique_ptr<RtcEventFrameDecoded> event =
(original_events_by_ssrc[ssrc].empty() || !force_repeated_fields_)
? gen_.NewFrameDecodedEvent(ssrc)
: original_events_by_ssrc[ssrc][0]->Copy();
history_.push_back(event->Copy());
original_events_by_ssrc[ssrc].push_back(std::move(event));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
auto status = parsed_log_.ParseString(encoded_);
if (!status.ok())
RTC_LOG(LS_ERROR) << status.message();
ASSERT_TRUE(status.ok());
const auto& decoded_frames_by_ssrc = parsed_log_.decoded_frames();
if (encoding_type_ == RtcEventLog::EncodingType::Legacy) {
ASSERT_EQ(decoded_frames_by_ssrc.size(), 0u);
return;
}
// Same number of distinct SSRCs.
ASSERT_EQ(decoded_frames_by_ssrc.size(), original_events_by_ssrc.size());
for (const auto& original_event_it : original_events_by_ssrc) {
const uint32_t ssrc = original_event_it.first;
const std::vector<std::unique_ptr<RtcEventFrameDecoded>>& original_frames =
original_event_it.second;
const auto& parsed_event_it = decoded_frames_by_ssrc.find(ssrc);
ASSERT_TRUE(parsed_event_it != decoded_frames_by_ssrc.end());
const std::vector<LoggedFrameDecoded>& parsed_frames =
parsed_event_it->second;
// Same number events for the SSRC under examination.
ASSERT_EQ(original_frames.size(), parsed_frames.size());
for (size_t i = 0; i < original_frames.size(); ++i) {
verifier_.VerifyLoggedFrameDecoded(*original_frames[i], parsed_frames[i]);
}
}
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventIceCandidatePairConfig) {
std::unique_ptr<RtcEventIceCandidatePairConfig> event =
gen_.NewIceCandidatePairConfig();
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& ice_candidate_pair_configs =
parsed_log_.ice_candidate_pair_configs();
ASSERT_EQ(ice_candidate_pair_configs.size(), 1u);
verifier_.VerifyLoggedIceCandidatePairConfig(*event,
ice_candidate_pair_configs[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventIceCandidatePair) {
std::unique_ptr<RtcEventIceCandidatePair> event = gen_.NewIceCandidatePair();
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& ice_candidate_pair_events =
parsed_log_.ice_candidate_pair_events();
ASSERT_EQ(ice_candidate_pair_events.size(), 1u);
verifier_.VerifyLoggedIceCandidatePairEvent(*event,
ice_candidate_pair_events[0]);
}
TEST_P(RtcEventLogEncoderTest, RtcEventLoggingStarted) {
const int64_t timestamp_ms = prng_.Rand(1'000'000'000);
const int64_t utc_time_ms = prng_.Rand(1'000'000'000);
// Overwrite the previously encoded LogStart event.
encoded_ = encoder_->EncodeLogStart(timestamp_ms * 1000, utc_time_ms * 1000);
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& start_log_events = parsed_log_.start_log_events();
ASSERT_EQ(start_log_events.size(), 1u);
verifier_.VerifyLoggedStartEvent(timestamp_ms * 1000, utc_time_ms * 1000,
start_log_events[0]);
}
TEST_P(RtcEventLogEncoderTest, RtcEventLoggingStopped) {
const int64_t start_timestamp_ms = prng_.Rand(1'000'000'000);
const int64_t start_utc_time_ms = prng_.Rand(1'000'000'000);
// Overwrite the previously encoded LogStart event.
encoded_ = encoder_->EncodeLogStart(start_timestamp_ms * 1000,
start_utc_time_ms * 1000);
const int64_t stop_timestamp_ms =
prng_.Rand(start_timestamp_ms, 2'000'000'000);
encoded_ += encoder_->EncodeLogEnd(stop_timestamp_ms * 1000);
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& stop_log_events = parsed_log_.stop_log_events();
ASSERT_EQ(stop_log_events.size(), 1u);
verifier_.VerifyLoggedStopEvent(stop_timestamp_ms * 1000, stop_log_events[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventProbeClusterCreated) {
std::unique_ptr<RtcEventProbeClusterCreated> event =
gen_.NewProbeClusterCreated();
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& bwe_probe_cluster_created_events =
parsed_log_.bwe_probe_cluster_created_events();
ASSERT_EQ(bwe_probe_cluster_created_events.size(), 1u);
verifier_.VerifyLoggedBweProbeClusterCreatedEvent(
*event, bwe_probe_cluster_created_events[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventProbeResultFailure) {
std::unique_ptr<RtcEventProbeResultFailure> event =
gen_.NewProbeResultFailure();
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& bwe_probe_failure_events = parsed_log_.bwe_probe_failure_events();
ASSERT_EQ(bwe_probe_failure_events.size(), 1u);
verifier_.VerifyLoggedBweProbeFailureEvent(*event,
bwe_probe_failure_events[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventProbeResultSuccess) {
std::unique_ptr<RtcEventProbeResultSuccess> event =
gen_.NewProbeResultSuccess();
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& bwe_probe_success_events = parsed_log_.bwe_probe_success_events();
ASSERT_EQ(bwe_probe_success_events.size(), 1u);
verifier_.VerifyLoggedBweProbeSuccessEvent(*event,
bwe_probe_success_events[0]);
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpPacketIncoming) {
if (force_repeated_fields_) {
// RTCP packets maybe delivered twice (once for audio and once for video).
// As a work around, we're removing duplicates in the parser.
return;
}
std::vector<std::unique_ptr<RtcEventRtcpPacketIncoming>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewRtcpPacketIncoming()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& incoming_rtcp_packets = parsed_log_.incoming_rtcp_packets();
ASSERT_EQ(incoming_rtcp_packets.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedRtcpPacketIncoming(*events[i],
incoming_rtcp_packets[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpPacketOutgoing) {
std::vector<std::unique_ptr<RtcEventRtcpPacketOutgoing>> events(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
events[i] = (i == 0 || !force_repeated_fields_)
? gen_.NewRtcpPacketOutgoing()
: events[0]->Copy();
history_.push_back(events[i]->Copy());
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& outgoing_rtcp_packets = parsed_log_.outgoing_rtcp_packets();
ASSERT_EQ(outgoing_rtcp_packets.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedRtcpPacketOutgoing(*events[i],
outgoing_rtcp_packets[i]);
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpReceiverReport) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::ReceiverReport> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewReceiverReport();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& receiver_reports = parsed_log_.receiver_reports(direction);
ASSERT_EQ(receiver_reports.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedReceiverReport(timestamps_ms[i], events[i],
receiver_reports[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpSenderReport) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::SenderReport> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewSenderReport();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& sender_reports = parsed_log_.sender_reports(direction);
ASSERT_EQ(sender_reports.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedSenderReport(timestamps_ms[i], events[i],
sender_reports[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpExtendedReports) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::ExtendedReports> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewExtendedReports();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& extended_reports = parsed_log_.extended_reports(direction);
ASSERT_EQ(extended_reports.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedExtendedReports(timestamps_ms[i], events[i],
extended_reports[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpFir) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::Fir> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewFir();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& firs = parsed_log_.firs(direction);
ASSERT_EQ(firs.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedFir(timestamps_ms[i], events[i], firs[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpPli) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::Pli> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewPli();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& plis = parsed_log_.plis(direction);
ASSERT_EQ(plis.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedPli(timestamps_ms[i], events[i], plis[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpBye) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::Bye> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewBye();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& byes = parsed_log_.byes(direction);
ASSERT_EQ(byes.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedBye(timestamps_ms[i], events[i], byes[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpNack) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::Nack> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewNack();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& nacks = parsed_log_.nacks(direction);
ASSERT_EQ(nacks.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedNack(timestamps_ms[i], events[i], nacks[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpRemb) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::Remb> events(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events[i] = gen_.NewRemb();
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& rembs = parsed_log_.rembs(direction);
ASSERT_EQ(rembs.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedRemb(timestamps_ms[i], events[i], rembs[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpTransportFeedback) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::TransportFeedback> events;
events.reserve(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events.emplace_back(gen_.NewTransportFeedback());
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& transport_feedbacks =
parsed_log_.transport_feedbacks(direction);
ASSERT_EQ(transport_feedbacks.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedTransportFeedback(timestamps_ms[i], events[i],
transport_feedbacks[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtcpLossNotification) {
if (force_repeated_fields_) {
return;
}
rtc::ScopedFakeClock fake_clock;
fake_clock.SetTime(Timestamp::Millis(prng_.Rand<uint32_t>()));
for (auto direction : {kIncomingPacket, kOutgoingPacket}) {
std::vector<rtcp::LossNotification> events;
events.reserve(event_count_);
std::vector<int64_t> timestamps_ms(event_count_);
for (size_t i = 0; i < event_count_; ++i) {
timestamps_ms[i] = rtc::TimeMillis();
events.emplace_back(gen_.NewLossNotification());
rtc::Buffer buffer = events[i].Build();
if (direction == kIncomingPacket) {
history_.push_back(
std::make_unique<RtcEventRtcpPacketIncoming>(buffer));
} else {
history_.push_back(
std::make_unique<RtcEventRtcpPacketOutgoing>(buffer));
}
fake_clock.AdvanceTime(TimeDelta::Millis(prng_.Rand(0, 1000)));
}
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& loss_notifications = parsed_log_.loss_notifications(direction);
ASSERT_EQ(loss_notifications.size(), event_count_);
for (size_t i = 0; i < event_count_; ++i) {
verifier_.VerifyLoggedLossNotification(timestamps_ms[i], events[i],
loss_notifications[i]);
}
}
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtpPacketIncoming) {
TestRtpPackets<RtcEventRtpPacketIncoming, LoggedRtpPacketIncoming>();
}
TEST_P(RtcEventLogEncoderTest, RtcEventRtpPacketOutgoing) {
TestRtpPackets<RtcEventRtpPacketOutgoing, LoggedRtpPacketOutgoing>();
}
TEST_P(RtcEventLogEncoderTest,
RtcEventRtpPacketIncomingNoDependencyDescriptor) {
test::ScopedFieldTrials no_dd(
"WebRTC-RtcEventLogEncodeDependencyDescriptor/Disabled/");
TestRtpPackets<RtcEventRtpPacketIncoming, LoggedRtpPacketIncoming>();
}
TEST_P(RtcEventLogEncoderTest,
RtcEventRtpPacketOutgoingNoDependencyDescriptor) {
test::ScopedFieldTrials no_dd(
"WebRTC-RtcEventLogEncodeDependencyDescriptor/Disabled/");
TestRtpPackets<RtcEventRtpPacketOutgoing, LoggedRtpPacketOutgoing>();
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventVideoReceiveStreamConfig) {
uint32_t ssrc = prng_.Rand<uint32_t>();
RtpHeaderExtensionMap extensions = gen_.NewRtpHeaderExtensionMap();
std::unique_ptr<RtcEventVideoReceiveStreamConfig> event =
gen_.NewVideoReceiveStreamConfig(ssrc, extensions);
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& video_recv_configs = parsed_log_.video_recv_configs();
ASSERT_EQ(video_recv_configs.size(), 1u);
verifier_.VerifyLoggedVideoRecvConfig(*event, video_recv_configs[0]);
}
// TODO(eladalon/terelius): Test with multiple events in the batch.
TEST_P(RtcEventLogEncoderTest, RtcEventVideoSendStreamConfig) {
uint32_t ssrc = prng_.Rand<uint32_t>();
RtpHeaderExtensionMap extensions = gen_.NewRtpHeaderExtensionMap();
std::unique_ptr<RtcEventVideoSendStreamConfig> event =
gen_.NewVideoSendStreamConfig(ssrc, extensions);
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ASSERT_TRUE(parsed_log_.ParseString(encoded_).ok());
const auto& video_send_configs = parsed_log_.video_send_configs();
ASSERT_EQ(video_send_configs.size(), 1u);
verifier_.VerifyLoggedVideoSendConfig(*event, video_send_configs[0]);
}
INSTANTIATE_TEST_SUITE_P(
RandomSeeds,
RtcEventLogEncoderTest,
::testing::Combine(/* Random seed*: */ ::testing::Values(1, 2, 3, 4, 5),
/* Encoding: */
::testing::Values(RtcEventLog::EncodingType::Legacy,
RtcEventLog::EncodingType::NewFormat),
/* Event count: */ ::testing::Values(1, 2, 10, 100),
/* Repeated fields: */ ::testing::Bool()));
class RtcEventLogEncoderSimpleTest
: public ::testing::TestWithParam<RtcEventLog::EncodingType> {
protected:
RtcEventLogEncoderSimpleTest() : encoding_type_(GetParam()) {
switch (encoding_type_) {
case RtcEventLog::EncodingType::Legacy:
encoder_ = std::make_unique<RtcEventLogEncoderLegacy>();
break;
case RtcEventLog::EncodingType::NewFormat:
encoder_ = std::make_unique<RtcEventLogEncoderNewFormat>();
break;
case RtcEventLog::EncodingType::ProtoFree:
encoder_ = std::make_unique<RtcEventLogEncoderV3>();
break;
}
encoded_ =
encoder_->EncodeLogStart(rtc::TimeMillis(), rtc::TimeUTCMillis());
}
~RtcEventLogEncoderSimpleTest() override = default;
std::deque<std::unique_ptr<RtcEvent>> history_;
std::unique_ptr<RtcEventLogEncoder> encoder_;
ParsedRtcEventLog parsed_log_;
const RtcEventLog::EncodingType encoding_type_;
std::string encoded_;
};
TEST_P(RtcEventLogEncoderSimpleTest, RtcEventLargeCompoundRtcpPacketIncoming) {
// Create a compound packet containing multiple Bye messages.
rtc::Buffer packet;
size_t index = 0;
for (int i = 0; i < 8; i++) {
rtcp::Bye bye;
std::string reason(255, 'a'); // Add some arbitrary data.
bye.SetReason(reason);
bye.SetSenderSsrc(0x12345678);
packet.SetSize(packet.size() + bye.BlockLength());
bool created =
bye.Create(packet.data(), &index, packet.capacity(), nullptr);
ASSERT_TRUE(created);
ASSERT_EQ(index, packet.size());
}
EXPECT_GT(packet.size(), static_cast<size_t>(IP_PACKET_SIZE));
auto event = std::make_unique<RtcEventRtcpPacketIncoming>(packet);
history_.push_back(event->Copy());
encoded_ += encoder_->EncodeBatch(history_.begin(), history_.end());
ParsedRtcEventLog::ParseStatus status = parsed_log_.ParseString(encoded_);
ASSERT_TRUE(status.ok()) << status.message();
const auto& incoming_rtcp_packets = parsed_log_.incoming_rtcp_packets();
ASSERT_EQ(incoming_rtcp_packets.size(), 1u);
ASSERT_EQ(incoming_rtcp_packets[0].rtcp.raw_data.size(), packet.size());
EXPECT_EQ(memcmp(incoming_rtcp_packets[0].rtcp.raw_data.data(), packet.data(),
packet.size()),
0);
}
INSTANTIATE_TEST_SUITE_P(
LargeCompoundRtcp,
RtcEventLogEncoderSimpleTest,
::testing::Values(RtcEventLog::EncodingType::Legacy,
RtcEventLog::EncodingType::NewFormat));
} // namespace webrtc